Fabrication and characterization of basil essential oil microcapsule-enriched mayonnaise and its antimicrobial properties against Escherichia coli and Salmonella Typhimurium
Yükleniyor...
Dosyalar
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Sci Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Nowadays, as consumers tend to avoid foods containing synthetic preservatives, technologically processed plant extracts can be a good alternative to these preservatives. In this study, previously obtained basil essential oil microcapsules (BEOM) were added to mayonnaise in order to produce a microbiologically safe product with improved physicochemical properties. Mayonnaises were prepared with 0%, 0.3%, 0.6%, and 0.9% BEOM replacement of the total oil content, called Mayo-Control, Mayo-0.3% BEOM, Mayo-0.6% BEOM, and Mayo-0.9% BEOM, respectively. Additionally, Mayo-SP containing ethylene diamine tetra-acetic acid and potassium sorbate was prepared. The enriched mayonnaises displayed better antimicrobial activity against Escherichia coli than Mayo-SP and Mayo-Control. Mayo-SP showed the best antimicrobial activity against Salmonella Typhimurium, followed by Mayo-0.9% BEOM. At the end of storage, Mayo-0.9% BEOM had the highest apparent viscosity, G ', and G '' values due to its high content of gum molecules. Trans-2-heptanal, an oxidation product, was not identified in the enriched mayonnaises or Mayo-SP. Finally, BEOM were efficient in providing microbial safety of mayonnaise and also improved the product's oxidative stability, viscosity, and aroma.
Açıklama
Anahtar Kelimeler
Basil essential oil microcapsules, Mayonnaise, Antimicrobial activity, Escherichia coli, Salmonella Typhimurium, Rheology, Reduced-Fat Mayonnaise, Chemical-Composition, Antibacterial Activity, Oxidative Stability, Inclusion Complexes, Beta-Cyclodextrin, Drying Methods, In-Vitro, Antioxidant, Encapsulation
Kaynak
Food Chemistry
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
359