Certain domains of a new matrix constructed by Euler totient and its summation function

dc.contributor.authorKara, Merve Ilkhan
dc.contributor.authorAydin, Dilek
dc.date.accessioned2025-10-11T20:47:40Z
dc.date.available2025-10-11T20:47:40Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractWith the aid of the Euler totient function phi and its summation function inverted perpendicular, a new matrix O(phi, inverted perpendicular) = (delta(phi, inverted perpendicular)nk), where delta(phi, inverted perpendicular)(nk) = {(-1)n-k inverted perpendicular(k)/ O-phi(n) , n - 1 <= k <= n, 0, otherwise is constructed to define the domains l(p)(O(phi, inverted perpendicular)), l(infinity)(O(phi, inverted perpendicular)), and l(1)(O(phi, inverted perpendicular)). After obtaining the norms on these domains, it is proved that these spaces are linearly isomorphic to classical ones. Also, their dual spaces are determined. Finally, characterizations of several matrix mappings are stated and proved.en_US
dc.identifier.doi10.3934/math.2025329
dc.identifier.endpage7222en_US
dc.identifier.issn2473-6988
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-105002356458en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage7206en_US
dc.identifier.urihttps://doi.org/10.3934/math.2025329
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21516
dc.identifier.volume10en_US
dc.identifier.wosWOS:001458927300004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofAims Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250911
dc.subjectarithmetic divisor sum functionen_US
dc.subjectmatrix domainen_US
dc.subjectdual spaceen_US
dc.subjectmatrix mappingen_US
dc.titleCertain domains of a new matrix constructed by Euler totient and its summation functionen_US
dc.typeArticleen_US

Dosyalar