Certain domains of a new matrix constructed by Euler totient and its summation function
Küçük Resim Yok
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Inst Mathematical Sciences-Aims
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
With the aid of the Euler totient function phi and its summation function inverted perpendicular, a new matrix O(phi, inverted perpendicular) = (delta(phi, inverted perpendicular)nk), where delta(phi, inverted perpendicular)(nk) = {(-1)n-k inverted perpendicular(k)/ O-phi(n) , n - 1 <= k <= n, 0, otherwise is constructed to define the domains l(p)(O(phi, inverted perpendicular)), l(infinity)(O(phi, inverted perpendicular)), and l(1)(O(phi, inverted perpendicular)). After obtaining the norms on these domains, it is proved that these spaces are linearly isomorphic to classical ones. Also, their dual spaces are determined. Finally, characterizations of several matrix mappings are stated and proved.
Açıklama
Anahtar Kelimeler
arithmetic divisor sum function, matrix domain, dual space, matrix mapping
Kaynak
Aims Mathematics
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
10
Sayı
3












