Certain domains of a new matrix constructed by Euler totient and its summation function

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Inst Mathematical Sciences-Aims

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

With the aid of the Euler totient function phi and its summation function inverted perpendicular, a new matrix O(phi, inverted perpendicular) = (delta(phi, inverted perpendicular)nk), where delta(phi, inverted perpendicular)(nk) = {(-1)n-k inverted perpendicular(k)/ O-phi(n) , n - 1 <= k <= n, 0, otherwise is constructed to define the domains l(p)(O(phi, inverted perpendicular)), l(infinity)(O(phi, inverted perpendicular)), and l(1)(O(phi, inverted perpendicular)). After obtaining the norms on these domains, it is proved that these spaces are linearly isomorphic to classical ones. Also, their dual spaces are determined. Finally, characterizations of several matrix mappings are stated and proved.

Açıklama

Anahtar Kelimeler

arithmetic divisor sum function, matrix domain, dual space, matrix mapping

Kaynak

Aims Mathematics

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

10

Sayı

3

Künye