Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels

dc.contributor.authorCanavar, Murat
dc.contributor.authorMat, Abdullah
dc.contributor.authorÇelik, Selahattin
dc.contributor.authorTimurkutluk, Bora
dc.contributor.authorKaplan, Yüksel
dc.date.accessioned2020-04-30T23:18:40Z
dc.date.available2020-04-30T23:18:40Z
dc.date.issued2016
dc.departmentDÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description1st International Symposium on Materials for Energy Storage and Conversion (ESC-IS) -- SEP 07-09, 2015 -- Middle E Tech Univ, Ankara, TURKEYen_US
dc.descriptionCELIK, SELAHATTIN/0000-0002-7306-9784; Timurkutluk, Bora/0000-0001-6916-7720en_US
dc.descriptionWOS: 000378359400039en_US
dc.description.abstractSolid oxide fuel cells (SOFCs) generate clean energy via electrochemical reactions at high operating temperatures. The distribution of the electrochemical reactions in the cell depends on the flow field design of the interconnectors. The non-uniform distribution of the reactions due to the flow field design may cause the development of thermal stresses which may lead to micro or macro cracks in the cell and thus a significant performance loss even a cell failure. In this study, the effects of operating current densities and fuel flow rates on the temperature profile within the cell and the cell performance are experimentally investigated for two different flow-field designs with Crofer 22 APU interconnectors, i.e. Design I and Design II. Design I, which mimics the conventional interconnector structure, has machined gas channels and porous nickel mesh at the anode side for the distribution of hydrogen and the collection of the current generated in the cell while at the anode side of Design II, only wire woven nickel mesh is employed. The experimental results indicate that Design II provides much more uniform temperature distributions under 20-40 A current loads and 1-2 NL/min H-2 flow rates when compared to those of Design I. Furthermore, Design II exhibits a higher peak power density than Design I at an operation temperature of 800 degrees C. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.ijhydene.2016.02.045en_US
dc.identifier.endpage10036en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue23en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage10030en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2016.02.045
dc.identifier.urihttps://hdl.handle.net/20.500.12684/3467
dc.identifier.volume41en_US
dc.identifier.wosWOS:000378359400039en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal Of Hydrogen Energyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSolid oxide fuel cellen_US
dc.subjectReal temperature distributionen_US
dc.subjectWoven mesh based flow fielden_US
dc.titleInvestigation of temperature distribution and performance of SOFC short stack with/without machined gas channelsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
3467.pdf
Boyut:
1.14 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text