Investigation of micro-tube solid oxide fuel cell fabrication using extrusion method

dc.contributor.authorMat, Abdullah
dc.contributor.authorCanavar, Murat
dc.contributor.authorTimurkutluk, Bora
dc.contributor.authorKaplan, Yüksel
dc.date.accessioned2020-04-30T23:18:38Z
dc.date.available2020-04-30T23:18:38Z
dc.date.issued2016
dc.departmentDÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description1st International Symposium on Materials for Energy Storage and Conversion (ESC-IS) -- SEP 07-09, 2015 -- Middle E Tech Univ, Ankara, TURKEYen_US
dc.descriptionTimurkutluk, Bora/0000-0001-6916-7720en_US
dc.descriptionWOS: 000378359400040en_US
dc.description.abstractExtrusion is one of the most effective and inexpensive methods used in the production of ceramic tubes for tubular or micro-tubular solid oxide fuel cell (SOFC) applications. In this method, the parameters such as the viscosity of the ceramic slurry, the extrusion speed and the die temperature need to be optimized for a high performance. In this study, anode supported micro-tubular solid oxide fuel cells are successfully fabricated via a specially designed vertical-type piston extruder machine. The die design enables the production of micro-tubular SOFCs with outer diameters from 3 to 4.5 mm. The die temperature is determined to be the most important process parameter and the suitable die temperature is ranging 40-70 degrees C depending on the slurry content. The electrolyte layer is coated on the anode support tube by vacuum assist dip coating technique and co-sintering is applied with a home-made porous sintering apparatus to avoid dimensional anomalies. The effects of the parameters such as the composition of the electrolyte solution, the vacuum pressure and the immersion time on the electrolyte thickness are investigated. It is found that the electrolyte thickness decreases when the immersion time and vacuum pressure are reduced. Moreover, the thickness of the electrolyte is found to be depended on the content of the electrolyte solution. The effect of the pre-sintering temperature on the electrolyte quality is also investigated. The sintering temperatures of 1000 degrees C and 1100 degrees C provide a similar and desired electrolyte microstructure. A peak power density of 140 mW cm(-2) is obtained at 700 degrees C from the final cell. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.ijhydene.2015.12.203en_US
dc.identifier.endpage10043en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue23en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage10037en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2015.12.203
dc.identifier.urihttps://hdl.handle.net/20.500.12684/3448
dc.identifier.volume41en_US
dc.identifier.wosWOS:000378359400040en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal Of Hydrogen Energyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMicro tubular solid oxide fuel cellen_US
dc.subjectExtrusion methoden_US
dc.subjectDie designen_US
dc.subjectDip coating techniqueen_US
dc.titleInvestigation of micro-tube solid oxide fuel cell fabrication using extrusion methoden_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
3448.pdf
Boyut:
1.72 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text