Quantum Integral Inequalities in the Setting of Majorization Theory and Applications

dc.authoridBin Mohsin, Bandar/0000-0002-2160-4159
dc.authoridNoor, Muhammad/0000-0001-6105-2435
dc.authoridKARA, Hasan/0000-0002-2075-944X
dc.authoridJaved, Muhammad Zakria/0000-0001-5212-6252
dc.authoridAwan, Muhammad Uzair/0000-0002-1019-9485
dc.authoridBudak, Hüseyin/0000-0001-8843-955X
dc.authorwosidBin Mohsin, Bandar/C-7273-2018
dc.authorwosidNoor, Muhammad/AAF-1238-2019
dc.contributor.authorBin Mohsin, Bandar
dc.contributor.authorJaved, Muhammad Zakria
dc.contributor.authorAwan, Muhammad Uzair
dc.contributor.authorBudak, Hüseyin
dc.contributor.authorKara, Hasan
dc.contributor.authorNoor, Muhammad Aslam
dc.date.accessioned2023-07-26T11:51:22Z
dc.date.available2023-07-26T11:51:22Z
dc.date.issued2022
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn recent years, the theory of convex mappings has gained much more attention due to its massive utility in different fields of mathematics. It has been characterized by different approaches. In 1929, G. H. Hardy, J. E. Littlewood, and G. Polya established another characterization of convex mappings involving an ordering relationship defined over PO known as majorization theory. Using this theory many inequalities have been obtained in the literature. In this paper, we study Hermite-Hadamard type inequalities using the Jensen-Mercer inequality in the frame of q-calculus and majorized l-tuples. Firstly we derive q-Hermite-Hadamard-Jensen-Mercer (H.H.J.M) type inequalities with the help of Mercer's inequality and its weighted form. To obtain some new generalized (H.H.J.M)-type inequalities, we prove a generalized quantum identity for q-differentiable mappings. Next, we obtain some estimation-type results; for this purpose, we consider q-identity, fundamental inequalities and the convexity property of mappings. Later on, We offer some applications to special means that demonstrate the importance of our main results. With the help of numerical examples, we also check the validity of our main outcomes. Along with this, we present some graphical analyses of our main results so that readers may easily grasp the results of this paper.en_US
dc.description.sponsorshipKing Saud University [RSP-2021/158]en_US
dc.description.sponsorshipThis research was funded by King Saud University grant number RSP-2021/158.en_US
dc.identifier.doi10.3390/sym14091925
dc.identifier.issn2073-8994
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85138665396en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.3390/sym14091925
dc.identifier.urihttps://hdl.handle.net/20.500.12684/12548
dc.identifier.volume14en_US
dc.identifier.wosWOS:000856670300001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorBudak, Hüseyin; Kara, Hasan
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofSymmetry-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz$2023V1Guncelleme$en_US
dc.subjectConvex; Quantum; Jensen-Mercer; Differentiable; Majorizationen_US
dc.subjectMercer Type Inequalities; Convexen_US
dc.titleQuantum Integral Inequalities in the Setting of Majorization Theory and Applicationsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
12548.pdf
Boyut:
507.95 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text