Milne-type inequalities for third differentiable and h-convex functions

dc.contributor.authorBenaissa, Bouharket
dc.contributor.authorBudak, Huseyin
dc.date.accessioned2025-10-11T20:48:03Z
dc.date.available2025-10-11T20:48:03Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThis paper develops a novel Milne inequality for third-differentiable and h-convex functions using Riemann integrals. Furthermore, new Milne inequalities are proposed utilizing a summation parameter p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq 1$\end{document} for s-convexity, convexity, and P-functions class. We examine cases when the third derivative functions are also bounded and Lipschitzian.en_US
dc.identifier.doi10.1186/s13661-024-01984-7
dc.identifier.issn1687-2770
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85214258737en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1186/s13661-024-01984-7
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21728
dc.identifier.volume2025en_US
dc.identifier.wosWOS:001391665800001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofBoundary Value Problemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250911
dc.subjecth-convex functionen_US
dc.subjectMilne's inequalityen_US
dc.subjectH & ouml;lder's inequalityen_US
dc.subjectRiemann's integralen_US
dc.titleMilne-type inequalities for third differentiable and h-convex functionsen_US
dc.typeArticleen_US

Dosyalar