Milne-type inequalities for third differentiable and h-convex functions

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

This paper develops a novel Milne inequality for third-differentiable and h-convex functions using Riemann integrals. Furthermore, new Milne inequalities are proposed utilizing a summation parameter p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq 1$\end{document} for s-convexity, convexity, and P-functions class. We examine cases when the third derivative functions are also bounded and Lipschitzian.

Açıklama

Anahtar Kelimeler

h-convex function, Milne's inequality, H & ouml;lder's inequality, Riemann's integral

Kaynak

Boundary Value Problems

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

2025

Sayı

1

Künye