Milne-type inequalities for third differentiable and h-convex functions
Küçük Resim Yok
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This paper develops a novel Milne inequality for third-differentiable and h-convex functions using Riemann integrals. Furthermore, new Milne inequalities are proposed utilizing a summation parameter p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq 1$\end{document} for s-convexity, convexity, and P-functions class. We examine cases when the third derivative functions are also bounded and Lipschitzian.
Açıklama
Anahtar Kelimeler
h-convex function, Milne's inequality, H & ouml;lder's inequality, Riemann's integral
Kaynak
Boundary Value Problems
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
2025
Sayı
1












