Some Parameterized Quantum Simpson's and Quantum Newton's Integral Inequalities via Quantum Differentiable Convex Mappings

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hindawi Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this work, two generalized quantum integral identities are proved by using some parameters. By utilizing these equalities, we present several parameterized quantum inequalities for convex mappings. These quantum inequalities generalize many of the important inequalities that exist in the literature, such as quantum trapezoid inequalities, quantum Simpson's inequalities, and quantum Newton's inequalities. We also give some new midpoint-type inequalities as special cases. The results in this work naturally generalize the results for the Riemann integral.

Açıklama

Anahtar Kelimeler

Hermite-Hadamard Inequalities; Midpoint Type Inequalities

Kaynak

Mathematical Problems In Engineering

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

2021

Sayı

Künye