Uptake and bioaccumulation of iron oxide nanoparticles (Fe3O4) in barley (Hordeum vulgare L.): effect of particle-size

dc.authoridSlimani, Yassine/0000-0002-2579-1617en_US
dc.authoridTombuloglu, Huseyin/0000-0001-8546-2658en_US
dc.authorscopusid56454447500en_US
dc.authorscopusid58905469100en_US
dc.authorscopusid53464361700en_US
dc.authorscopusid57105963800en_US
dc.authorscopusid36909462700en_US
dc.authorscopusid36993011800en_US
dc.authorscopusid56998718000en_US
dc.authorwosidBaykal, Abdulhadi/KHY-0822-2024en_US
dc.authorwosidSlimani, Yassine/E-5054-2017en_US
dc.authorwosidTombuloglu, Huseyin/P-2037-2016en_US
dc.contributor.authorTombuloglu, Guzin
dc.contributor.authorAldahnem, Anwar
dc.contributor.authorTombuloglu, Huseyin
dc.contributor.authorSlimani, Yassine
dc.contributor.authorAkhtar, Sultan
dc.contributor.authorHakeem, Khalid Rehman
dc.contributor.authorAlmessiere, Munirah A.
dc.date.accessioned2024-08-23T16:07:05Z
dc.date.available2024-08-23T16:07:05Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractRoot-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.en_US
dc.description.sponsorshipInstitute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal Universityen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.identifier.doi10.1007/s11356-024-32378-y
dc.identifier.issn0944-1344
dc.identifier.issn1614-7499
dc.identifier.pmid38403831en_US
dc.identifier.scopus2-s2.0-85185963911en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1007/s11356-024-32378-y
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14483
dc.identifier.wosWOS:001172607700006en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofEnvironmental Science and Pollution Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNanoparticle sizeen_US
dc.subjectIron oxideen_US
dc.subjectBarleyen_US
dc.subjectTranslocationen_US
dc.subjectUptakeen_US
dc.subjectWheat Triticum-Aestivumen_US
dc.subjectMagnetic-Fielden_US
dc.subjectCombustion Synthesisen_US
dc.subjectOxidative Stressen_US
dc.subjectTranslocationen_US
dc.subjectCatalaseen_US
dc.subjectGrowthen_US
dc.subjectPlantsen_US
dc.subjectAccumulationen_US
dc.subjectAntioxidanten_US
dc.titleUptake and bioaccumulation of iron oxide nanoparticles (Fe3O4) in barley (Hordeum vulgare L.): effect of particle-sizeen_US
dc.typeArticleen_US

Dosyalar