A Comparative Study on the Main Electrical Parameters of Au/n-Si, Au/Biphenyl-CuPc/n-Si/ and Au/Biphenylsubs-CoPc/n-Si/ Type Schottky Barrier Diodes

Yükleniyor...
Küçük Resim

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Scientific Publishers

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We have produced Au/n-Si (MS), Au/n-Si/biphenyl-CuPc (MPS1), and Au/n-Si/biphenylSubs-CoPc (MPS2) type Schottky barrier diodes (SBDs) to investigate the effect of interfacial layer on the main electrical parameters. Biphenyl-CuPc and biphenylSubs-CoPc interfacial layers were successfully coated on n-Si substrate by using the spin coating system. The current-voltage (I-V) characteristics of these structures were investigated at room temperature and they were considerably influenced by the interfacial layer. The main electronic parameters of these three type diodes that are reverse saturation current (I-0), series resistance (R-s), ideality factor (n), and zero-bias barrier height (Phi(B0)) were determined from the forward bias I-V characteristic. The energy density distribution profile of the interface states (N-ss) was also obtained from the forward I-V data by taking into account voltage dependent effective barrier height (Phi(theta)) and ideality factor n(V), and increased from the bottom of conductance band to the mid-gap energy of Si almost exponentially. In addition, the voltage dependent profile of resistance was obtained from capacitance-voltage (C-V) and conductance-voltage (G/omega - V) data at high frequency (500 kHz) at room temperature for each diode. Experimental results show that the R-s, N-ss and the interfacial layer are significantly effective on the electrical characteristics.

Açıklama

WOS: 000386520700012

Anahtar Kelimeler

Au/n-Si/Biphenyl-CuPc SBDs, Au/n-Si/Biphenylsubs-CoPc SBDs, Phthalocyanine (Pc), I-V Characteristics, Series Resistance, Surface States

Kaynak

Journal Of Nanoelectronics And Optoelectronics

WoS Q Değeri

Q4

Scopus Q Değeri

N/A

Cilt

11

Sayı

5

Künye