On some new generalized fractional inequalities for twice differentiable functions

dc.authoridKARA, Hasan/0000-0002-2075-944X
dc.contributor.authorBudak, Hüseyin
dc.contributor.authorYavuz, Melike
dc.contributor.authorKara, Hasan
dc.date.accessioned2023-07-26T11:57:17Z
dc.date.available2023-07-26T11:57:17Z
dc.date.issued2022
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we establish an identity involving Sarikaya fractional integrals for twice differentiable functions. We obtain some new generalized fractional inequalities for the functions whose second derivatives in absolute value are convex by utilizing obtained equality. Utilizing the new inequalities obtained, some new inequalities for Riemann-Liouville fractional integrals and k-Riemann-Liouville fractional integrals are obtained. In addition, some of these results generalize ones obtained in earlier works.en_US
dc.identifier.doi10.1007/s40065-022-00381-1
dc.identifier.endpage519en_US
dc.identifier.issn2193-5343
dc.identifier.issn2193-5351
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85133172255en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage507en_US
dc.identifier.urihttps://doi.org/10.1007/s40065-022-00381-1
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13112
dc.identifier.volume11en_US
dc.identifier.wosWOS:000819352300001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorBudak, Hüseyin
dc.institutionauthorYavuz, Melike; Kara, Hasan
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofArabian Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz$2023V1Guncelleme$en_US
dc.subject26d07; 26d10; 26d15; 26a33en_US
dc.subjectIntegral-Inequalities; Real Numbers; Mappingsen_US
dc.titleOn some new generalized fractional inequalities for twice differentiable functionsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13112.pdf
Size:
322.55 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text