Full idempotents in Leavitt path algebras
dc.contributor.author | Emre, Ekrem | |
dc.date.accessioned | 2020-05-01T12:10:07Z | |
dc.date.available | 2020-05-01T12:10:07Z | |
dc.date.issued | 2019 | |
dc.department | DÜ, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description | WOS: 000462509400002 | en_US |
dc.description.abstract | We give necessary and sufficient conditions on a directed graph E for which the associated Leavit path algebra L-K(E) has at least one full idempotent. Also, we define E-n, n >= 0 sub-graphs of E and show that L-K(E) has at least one full idempotent if and only if there is a sub-graph Er such that the associated Leavitt path algebra L-K(E-r) has at least one full idempotent. | en_US |
dc.identifier.doi | 10.1142/S0219498819500622 | en_US |
dc.identifier.issn | 0219-4988 | |
dc.identifier.issn | 1793-6829 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1142/S0219498819500622 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/6020 | |
dc.identifier.volume | 18 | en_US |
dc.identifier.wos | WOS:000462509400002 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | Journal Of Algebra And Its Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Full idempotent | en_US |
dc.subject | Leavitt path algebra | en_US |
dc.subject | restriction graph | en_US |
dc.subject | Morita invariant property | en_US |
dc.subject | source elimination | en_US |
dc.title | Full idempotents in Leavitt path algebras | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 6018.pdf
- Boyut:
- 155.1 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text