Parametric optimization of an impingement jet solar air heater for active green heating in buildings using hybrid CRITIC-COPRAS approach

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier France-Editions Scientifiques Medicales Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This work aimed to optimize the parameters of discrete multi-arc shaped ribs (DMASRs) in a solar air heating system (SAHS) through multi-criteria decision-making techniques. In the experiment, the roughness parameters of DMASRs were varied to find the best parameter combination for optimal SAHS performance. The relative rib height (Hr /H) was varied from 0.025 to 0.047 , and the relative rib pitch (Pr /H) was varied from 0.58 to 3.1. The results obtained for the Nusselt number and friction factor, which determine the performance of the SAHS system, depend on the geometrical parameters of the roughness. The parameters of DMASRs did not show any discernible trend. Hence, a multi-decision criteria approach that uses criteria importance through inter-criteria correlation (CRITIC) and complex proportional assessment (COPRAS) hybrid techniques was employed to determine the best parameter combination for optimal performance. The novel aspect of this study includes the use of a hybrid method (experimental and analytical) to optimize the performance of SAHS roughened with DMASRs hindrance promoters and predictions of outcomes using a hybrid CRITIC-COPRAS approach. The experimental and analytical examination through the use of the hybrid CRITIC-COPRAS approach is an essential component of this research that contributes to the optimization of the design parameters of such SAHS. The finding demonstrated that when Re = 19000, Pr/H = 1.7, and Hr/H = 0.047 were reached, the SAHS obtained an optimal thermohydraulic performance of 4.1.

Açıklama

Anahtar Kelimeler

Green energy, Optimization, CRITIC, COPRAS, Thermohydraulic performance, Solar air heating system, Transfer Enhancement, Performance, Roughness, Collector, Preference, Entropy, Channel, Energy, Fins

Kaynak

International Journal of Thermal Sciences

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

197

Sayı

Künye