Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
dc.authorid | Ntouyas, Sotiris/0000-0002-7695-2118 | |
dc.authorid | Budak, Huseyin/0000-0001-8843-955X | |
dc.authorid | Tariboon, Jessada/0000-0001-8185-3539 | |
dc.contributor.author | Sitho, Surang | |
dc.contributor.author | Ali, Muhammad Aamir | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Ntouyas, Sotiris K. | |
dc.contributor.author | Tariboon, Jessada | |
dc.date.accessioned | 2021-12-01T18:50:40Z | |
dc.date.available | 2021-12-01T18:50:40Z | |
dc.date.issued | 2021 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | In this article, we use quantum integrals to derive Hermite-Hadamard inequalities for preinvex functions and demonstrate their validity with mathematical examples. We use the q(x)(2)- quantum integral to show midpoint and trapezoidal inequalities for q(x)(2)-differentiable preinvex functions. Furthermore, we demonstrate with an example that the previously proved Hermite- Hadamard-type inequality for preinvex functions via q(x)(1)-quantum integral is not valid for preinvex functions, and we present its proper form. We use q(x)(1)-quantum integrals to show midpoint inequalities for q(x)(1)-differentiable preinvex functions. It is also demonstrated that by considering the limit q -> 1(-) and eta(x(2), x(1)) = -eta(x(1), x(2)) = x(2), x(1) in the newly derived results, the newly proved findings can be turned into certain known results. | en_US |
dc.description.sponsorship | King Mongkut's University of Technology North Bangkok [KMUTNB-61-KNOW-030] | en_US |
dc.description.sponsorship | This research was funded by King Mongkut's University of Technology North Bangkok, contract No. KMUTNB-61-KNOW-030. | en_US |
dc.identifier.doi | 10.3390/math9141666 | |
dc.identifier.issn | 2227-7390 | |
dc.identifier.issue | 14 | en_US |
dc.identifier.scopus | 2-s2.0-85111268366 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.3390/math9141666 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10909 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000677330600001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hermite-Hadamard inequality | en_US |
dc.subject | q-integral | en_US |
dc.subject | quantum calculus | en_US |
dc.subject | preinvex function | en_US |
dc.subject | trapezoid inequalities | en_US |
dc.subject | midpoint inequalities | en_US |
dc.subject | Hermite-Hadamard Inequalities | en_US |
dc.subject | Integral-Inequalities | en_US |
dc.subject | Differentiable Mappings | en_US |
dc.subject | Real Numbers | en_US |
dc.subject | Convex | en_US |
dc.title | Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10909.pdf
- Boyut:
- 5.09 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text