Histogram-based automatic segmentation of images

dc.contributor.authorKüçükkülahlı, Enver
dc.contributor.authorErdoğmuş, Pakize
dc.contributor.authorPolat, Kemal
dc.date.accessioned2020-05-01T12:10:23Z
dc.date.available2020-05-01T12:10:23Z
dc.date.issued2016
dc.departmentDÜ, Düzce Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.descriptionPolat, Kemal/0000-0003-1840-9958en_US
dc.descriptionWOS: 000378152800027en_US
dc.description.abstractThe segmentation process is defined by separating the objects as clustering in the images. The most used method in the segmentation is k-means clustering algorithm. k-means clustering algorithm needs the number of clusters, the initial central points of clusters as well as the image information. However, there is no preliminary information about the number of clusters in real-life problems. The parameters defined by the user in the segmentation algorithms affect the results of segmentation process. In this study, a general approach performing segmentation without requiring any parameters has been developed. The optimum cluster number has been obtained searching the histogram both vertically and horizontally and recording the local and global maximum values. The quite nearly values have been omitted, since the near local peaks are nearly the same objects. Segmentation processes have been performed with k-means clustering giving the possible centroids of the clusters and the optimum cluster number obtained from the histogram. Finally, thanks to histogram method, the number of clusters of k-means clustering has been automatically found for each image dataset. And also, the histogram-based finding of the number of clusters in datasets could be used prior to clustering algorithm for other signal or image-based datasets. These results have shown that the proposed hybrid method based on histogram and k-means clustering method has obtained very promising results in the image segmentation problems.en_US
dc.identifier.doi10.1007/s00521-016-2287-7en_US
dc.identifier.endpage1450en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue5en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1445en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-016-2287-7
dc.identifier.urihttps://hdl.handle.net/20.500.12684/6173
dc.identifier.volume27en_US
dc.identifier.wosWOS:000378152800027en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHistogramen_US
dc.subjectSegmentationen_US
dc.subjectClusteringen_US
dc.subjectImage processingen_US
dc.titleHistogram-based automatic segmentation of imagesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
6173.pdf
Boyut:
983.61 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text