Salvia officinalis leaf extract-stabilized NiO NPs, ZnO NPs, and NiO@ZnO nanocomposite: Green hydrothermal synthesis, characterization and supercapacitor application

dc.authorscopusid58752895900en_US
dc.authorscopusid6603031753en_US
dc.authorscopusid16021622500en_US
dc.authorscopusid13405405500en_US
dc.authorscopusid55964006300en_US
dc.contributor.authorZenkin, Kuebra
dc.contributor.authorDurmus, Sefa
dc.contributor.authorEmre, Deniz
dc.contributor.authorBilici, Ali
dc.contributor.authorYilmaz, Selehattin
dc.date.accessioned2024-08-23T16:07:03Z
dc.date.available2024-08-23T16:07:03Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractIn this study, NiO nanoparticles (NiO NPs) and NiO@ZnO nanocomposite were synthesized for the first time using a Salvia officinalis (S. officinalis) extract-assisted hydrothermal process. The S. officinalis leaf extract served as a natural reducing and capping agent. The synthesized NiO NPs, ZnO NPs, and NiO@ZnO nanocomposite were thoroughly characterized using various techniques, including Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), energy-dispersive spectrometry (EDS) mapping, vibrating sample magnetometer (VSM), and cyclic voltammetry (CV) analysis. The direct and indirect band gap energies of NiO NPs, ZnO NPs, and NiO@ZnO were found to be 3.00, 2.28, and 2.71 eV, and 2.63, 1.91, and 2.23 eV, respectively. The crystallite sizes were analyzed using PXRD spectra through Scherrer and Williamson-Hall (W-H) methods. TEM analysis revealed that the average particle sizes of NiO NPs, ZnO NPs, and NiO@ZnO were 16.0, 207.5, and 31.0 nm, respectively. The magnetic properties of all nanomaterials were assessed via the VSM technique. Specific capacitance (Cs) values, determined from CV voltammograms, were 196.8, 632.4, and 785 Fg-1 at a scan rate of 25 mVs-1 for NiO NPs, ZnO NPs, and NiO@ZnO, respectively. These findings suggest that the green-synthesized NiO@ZnO nanocomposite holds significant potential as a high-performance electrode material for supercapacitor applications.en_US
dc.description.sponsorshipDuzce University Scientific Project [2022.05.03.1365]en_US
dc.description.sponsorshipThis work was supported by the Duzce University Scientific Project (Number: 2022.05.03.1365).en_US
dc.identifier.doi10.1007/s13399-024-05808-7
dc.identifier.issn2190-6815
dc.identifier.issn2190-6823
dc.identifier.scopus2-s2.0-85195446761en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.urihttps://doi.org/10.1007/s13399-024-05808-7
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14447
dc.identifier.wosWOS:001243654600001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofBiomass Conversion and Biorefineryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGreen hydrothermal synthesisen_US
dc.subjectWilliamson-Hall methoden_US
dc.subjectNanocompositeen_US
dc.subjectSalvia officinalisen_US
dc.subjectSupercapacitoren_US
dc.subjectLattice Strainen_US
dc.subjectMetal-Oxidesen_US
dc.subjectNanoparticlesen_US
dc.subjectHeterojunctionen_US
dc.subjectAntibacterialen_US
dc.subjectPerformanceen_US
dc.subjectSizeen_US
dc.titleSalvia officinalis leaf extract-stabilized NiO NPs, ZnO NPs, and NiO@ZnO nanocomposite: Green hydrothermal synthesis, characterization and supercapacitor applicationen_US
dc.typeArticleen_US

Dosyalar