Deriving weighted Newton-type inequalities for diverse function classes through Riemann-Liouville fractional integrals
dc.authorid | Almoneef, Areej/0000-0001-7041-3730 | en_US |
dc.authorid | Budak, Huseyin/0000-0001-8843-955X | en_US |
dc.authorscopusid | 57729815600 | en_US |
dc.authorscopusid | 55655209500 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.authorwosid | Almoneef, Areej/GRJ-3845-2022 | en_US |
dc.contributor.author | Almoneef, Areej A. | |
dc.contributor.author | Hyder, Abd-Allah | |
dc.contributor.author | Budak, Huseyin | |
dc.date.accessioned | 2024-08-23T16:04:56Z | |
dc.date.available | 2024-08-23T16:04:56Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | This study introduces weighted Newton-type inequalities for diverse function classes via Riemann-Liouville fractional integrals. We begin by employing a positive weighted function to demonstrate a crucial integral equality which necessary for establishing the main outcomes. Leveraging this equality along with Riemann- Liouville fractional integrals, we prove several weighted Newton-type inequalities for various function classes, including differentiable convex functions, bounded functions, Lipschitzian functions, and functions of bounded variation. From the obtained results, one can get an insights into the implications of Newton-type inequalities and outlines potential avenues for future research endeavors. | en_US |
dc.description.sponsorship | Deanship of Research and Graduate Studies at King Khalid University [RGP.2/82/45]; Princess Nourah bint Abdulrahman University [PNURSP2024R337] | en_US |
dc.description.sponsorship | The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Research Groups Program under grant (RGP.2/82/45) . The authors would like to acknowledge the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R337) . | en_US |
dc.identifier.doi | 10.1016/j.chaos.2024.115205 | |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.scopus | 2-s2.0-85197293393 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2024.115205 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14409 | |
dc.identifier.volume | 186 | en_US |
dc.identifier.wos | WOS:001265661100001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Chaos Solitons & Fractals | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Weighted inequalities | en_US |
dc.subject | Newton-type inequalities | en_US |
dc.subject | Fractional integral inequalities | en_US |
dc.title | Deriving weighted Newton-type inequalities for diverse function classes through Riemann-Liouville fractional integrals | en_US |
dc.type | Article | en_US |