A Comperative Study on Novel Machine Learning Algorithms for Estimation of Energy Performance of Residential Buildings
dc.contributor.author | Sönmez, Yusuf | |
dc.contributor.author | Güvenç, Uğur | |
dc.contributor.author | Kahraman, H. Tolga | |
dc.contributor.author | Yılmaz, Cemal | |
dc.date.accessioned | 2020-04-30T22:38:39Z | |
dc.date.available | 2020-04-30T22:38:39Z | |
dc.date.issued | 2015 | |
dc.department | DÜ, Teknoloji Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description | 3rd International Istanbul Smart Grid Congress and Fair (ICSG) -- APR 29-30, 2015 -- Istanbul, TURKEY | en_US |
dc.description | GUVENC, Ugur/0000-0002-5193-7990; sonmez, yusuf/0000-0002-9775-9835; kahraman, hamdi/0000-0001-9985-6324 | en_US |
dc.description | WOS: 000379385200002 | en_US |
dc.description.abstract | This study aims to improve the energy performance of residential buildings. heating load (HL) and cooling load (CL) are considered as a measure of heating ventilation and air conditioning (HVAC) system in this process. In order to achive an effective estimation, hybrid machine learning algorithms including, artificial bee colony-based k-nearest neighbor (abc-knn), genetic algorithm-based knn (ga-knn), adaptive artificial neural network with genetic algorithm (ga-ann) and adaptive ann with artificial bee colony (abc-ann) are used. Results are compared classical knn and ann methods. Thence, relations between input and target parameters are defined and performance of well-known classical knn and ann is improved substantialy. | en_US |
dc.identifier.doi | 10.1109/SGCF.2015.7354915 | en_US |
dc.identifier.isbn | 978-1-4673-6625-0 | |
dc.identifier.uri | https://doi.org/10.1109/SGCF.2015.7354915 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/2339 | |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2015 3Rd International Istanbul Smart Grid Congress And Fair (Icsg) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | component | en_US |
dc.subject | energy performance of residential buildings | en_US |
dc.subject | heating load | en_US |
dc.subject | cooling load | en_US |
dc.subject | k-nearest neighbor | en_US |
dc.subject | artificial bee colony algorithm | en_US |
dc.subject | genetic algorithm | en_US |
dc.subject | artificial neural network | en_US |
dc.title | A Comperative Study on Novel Machine Learning Algorithms for Estimation of Energy Performance of Residential Buildings | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 2339.pdf
- Boyut:
- 923.58 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text