Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper examines the effect of adding high dosage of copper oxide (CuO) nanomaterials (<77 nm) directly to conventional diesel fuel. The performance of the fuel with CuO added is assessed using a single cylinder, naturally aspirated, direct injection, air-cooled diesel engine. Examined were the char-acteristics of combustion and emissions for blends of 1000 and 2000 ppm CuO nanoparticles. The CuO blends were tested in the speed range between 2000 and 3000 rpm at intervals of 250 rpm. The CuO nanoparticles have the potential to accelerate the process of combustion by supplying molecules of oxygen and acting as a catalyst. The CuO enhances the thermal conductivity of the test fuels and in-creases heat dissipation from the combustion chamber. Experimental results show exhaust gas tem-perature (EGT) is reduced as well as unburnt hydro-carbons (HC) and oxides of carbon and nitrogen (CO and NOx). For CuO additions of 1000 and 2000 ppm, CO emissions fell by 14.6% and 20.8%, HC emissions by 6.2% and 13.4%, and NOx emissions by 4%, and 4.7%. Both blends of CuO increased the heating value of the diesel fuel. Brake-specific fuel consumption (BSFC) dropped by 4.5% and 8% while brake thermal efficiency (BTE) increased by 5.5% and 14.6% for 1000-CuO and 2000-CuO, respectively. On the other hand, nanoparticles accelerated the chemical reactions and the ignition delay (ID) period was shortened by 3.03% and 5.45% for CuO additions of 1000, and 2000 ppm, respectively. It was also observed that CuO nanoparticles up to 2000 ppm can be suspended in diesel fuel without clogging the filter on the injection system. (c) 2021 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Copper oxide, Combustion, Emission, Nanoparticle, Nanofuel, Performance, Combustion Characteristics, Aluminum-Oxide, Emission Characteristics, Methyl-Ester, Performance, Biodiesel, Alcohol, Blends, Oil

Kaynak

Energy

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

229

Sayı

Künye