Multifunctional GFRC composites: PEDOT: PSS-driven dielectric enhancement for energy storage and sensing applications

dc.contributor.authorDemir, Ahmet
dc.contributor.authorMusatat, Ahmad Badreddin
dc.contributor.authorSubasi, Azime
dc.contributor.authorRamazanoglu, Dogu
dc.contributor.authorDehgan, Haydar
dc.contributor.authorMarasli, Muhammed
dc.contributor.authorGencel, Osman
dc.date.accessioned2025-10-11T20:48:32Z
dc.date.available2025-10-11T20:48:32Z
dc.date.issued2026
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThis study presents a comprehensive investigation into the development and characterization of multifunctional Glass Fiber Reinforced Cement (GFRC) composites enhanced with Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT: PSS) to impart advanced electrical properties. We systematically analyzed the influence of PEDOT: PSS concentration (0-15 wt %) and curing age on the dielectric behavior of these novel composites, evaluating their capacitance, dielectric constant, loss factor, and electrical modulus across a broad frequency range (10 Hz-10 MHz). The integration of PEDOT: PSS significantly modified the material's electrical characteristics, demonstrating concentration-dependent variations and complex relaxation mechanisms dominated by Maxwell-Wagner interfacial polarization. The optimized P2 formulation (10 wt % PEDOT: PSS) exhibited superior electrochemical performance, maintaining the highest capacitance values and achieving a peak dissipation factor (tan delta) of 0.43 +/- 0.02 at day 15, representing a 185 % enhancement over unmodified GFRC. EDX analysis confirmed successful polymer incorporation, with P2 exhibiting the highest carbon content (5.8 wt %) and sulfur content (1.8 wt %), indicating optimal dispersion. Equivalent circuit models were established and validated (R2 > 0.98), providing insights into complex charge transport mechanisms within this hybrid material. Microstructural analyses via scanning electron microscopy revealed significant morphological modifications, including the formation of crystalline and plate-like structures, while complementary FT-IR and TGA analyses confirmed polymer-cement interaction stability and thermal stability up to 450 degrees C. These findings establish fundamental design principles for creating electrically conductive cementitious materials with tunable dielectric properties, enabling strategic deployment in innovative infrastructure systems, energy storage devices, and electromagnetic shielding technologies.en_US
dc.identifier.doi10.1016/j.matchemphys.2025.131512
dc.identifier.issn0254-0584
dc.identifier.issn1879-3312
dc.identifier.scopus2-s2.0-105014763875en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.matchemphys.2025.131512
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21952
dc.identifier.volume347en_US
dc.identifier.wosWOS:001568842800001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Saen_US
dc.relation.ispartofMaterials Chemistryand Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_WOS_20250911
dc.subjectDielectric propertiesen_US
dc.subjectGlass fiber reinforced concreteen_US
dc.subjectSmart infrastructureen_US
dc.subjectPoly(3,4-ethylenedioxythiophene)en_US
dc.subjectDielectric propertiesen_US
dc.subjectGlass fiber reinforced concreteen_US
dc.subjectSmart infrastructureen_US
dc.titleMultifunctional GFRC composites: PEDOT: PSS-driven dielectric enhancement for energy storage and sensing applicationsen_US
dc.typeArticleen_US

Dosyalar