Genetic algorithms to determine the critical values of a power energy system for different operating conditions
dc.contributor.author | Kandara, Osman | |
dc.contributor.author | Öztürk, Ali | |
dc.date.accessioned | 2020-05-01T12:10:11Z | |
dc.date.available | 2020-05-01T12:10:11Z | |
dc.date.issued | 2012 | |
dc.department | DÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description | WOS: 000297087600047 | en_US |
dc.description.abstract | Critical values of a power system are the values of load bus active power, load bus voltage amplitude, and load bus angle when the load bus has the highest active power value. These values depend on various factors such as the length, voltage, the number, and the serial and shunt compensation rates of the line. In this study, we take the IEEE's 6-bus power system as our base system. We first used the Newton Raphson (NR) method to determine the critical values under various operating conditions. Then, we used genetic algorithms, which is an artificial intelligence method commonly used in optimization, to determine the critical values under the same operating conditions. At the end, we compared the results. The results show that overall the critical values determined using GA is as good as with or better than those obtained using the traditional NR method. | en_US |
dc.identifier.endpage | 982 | en_US |
dc.identifier.issn | 1308-772X | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 971 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/6063 | |
dc.identifier.volume | 28 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sila Science | en_US |
dc.relation.ispartof | Energy Education Science And Technology Part A-Energy Science And Research | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Power system stability | en_US |
dc.subject | Power Distribution | en_US |
dc.subject | Newton Raphson | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.title | Genetic algorithms to determine the critical values of a power energy system for different operating conditions | en_US |
dc.type | Article | en_US |