Simpson-type inequalities by means of tempered fractional integrals

dc.authoridAlmoneef, Areej/0000-0001-7041-3730;en_US
dc.authorscopusid57729815600en_US
dc.authorscopusid55655209500en_US
dc.authorscopusid55577228500en_US
dc.authorscopusid57038541500en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.authorwosidAlmoneef, Areej/GRJ-3845-2022en_US
dc.authorwosidHezenci, Fatih/KFB-5970-2024en_US
dc.contributor.authorAlmoneef, Areej A.
dc.contributor.authorHyder, Abd-Allah
dc.contributor.authorHezenci, Fatih
dc.contributor.authorBudak, Huseyin
dc.date.accessioned2024-08-23T16:03:30Z
dc.date.available2024-08-23T16:03:30Z
dc.date.issued2023en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThe latest iterations of Simpson-type inequalities (STIs) are the topic of this paper. These inequalities were generated via convex functions and tempered fractional integral operators (TFIOs). To get these sorts of inequalities, we employ the well-known Ho center dot lder inequality and the inequality of exponent mean. The subsequent STIS are a generalization of several works on this topic that use the fractional integrals of Riemann-Liouville (FIsRL). Moreover, distinctive outcomes can be achieved through unique selections of the parameters.en_US
dc.description.sponsorshipDeanship of Scientific Research at King Khalid University [RGP.2/102/44]; Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP2023R337]en_US
dc.description.sponsorshipThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant (RGP.2/102/44) . The authors would like to acknowledge the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R337) , Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.en_US
dc.identifier.doi10.3934/math.20231505
dc.identifier.endpage29423en_US
dc.identifier.issn2473-6988
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85175311156en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage29411en_US
dc.identifier.urihttps://doi.org/10.3934/math.20231505
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13783
dc.identifier.volume8en_US
dc.identifier.wosWOS:001133603500054en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofAims Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSimpson-type inequalitiesen_US
dc.subjectconvex functionsen_US
dc.subjectfractional integralsen_US
dc.subjectRiemann-Liouville fractional integralsen_US
dc.subjecttempered fractional integralsen_US
dc.titleSimpson-type inequalities by means of tempered fractional integralsen_US
dc.typeArticleen_US

Dosyalar