Simpson-type inequalities by means of tempered fractional integrals
dc.authorid | Almoneef, Areej/0000-0001-7041-3730; | en_US |
dc.authorscopusid | 57729815600 | en_US |
dc.authorscopusid | 55655209500 | en_US |
dc.authorscopusid | 55577228500 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.authorwosid | Almoneef, Areej/GRJ-3845-2022 | en_US |
dc.authorwosid | Hezenci, Fatih/KFB-5970-2024 | en_US |
dc.contributor.author | Almoneef, Areej A. | |
dc.contributor.author | Hyder, Abd-Allah | |
dc.contributor.author | Hezenci, Fatih | |
dc.contributor.author | Budak, Huseyin | |
dc.date.accessioned | 2024-08-23T16:03:30Z | |
dc.date.available | 2024-08-23T16:03:30Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | The latest iterations of Simpson-type inequalities (STIs) are the topic of this paper. These inequalities were generated via convex functions and tempered fractional integral operators (TFIOs). To get these sorts of inequalities, we employ the well-known Ho center dot lder inequality and the inequality of exponent mean. The subsequent STIS are a generalization of several works on this topic that use the fractional integrals of Riemann-Liouville (FIsRL). Moreover, distinctive outcomes can be achieved through unique selections of the parameters. | en_US |
dc.description.sponsorship | Deanship of Scientific Research at King Khalid University [RGP.2/102/44]; Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP2023R337] | en_US |
dc.description.sponsorship | The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant (RGP.2/102/44) . The authors would like to acknowledge the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R337) , Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. | en_US |
dc.identifier.doi | 10.3934/math.20231505 | |
dc.identifier.endpage | 29423 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85175311156 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 29411 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.20231505 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13783 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:001133603500054 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Mathematical Sciences-Aims | en_US |
dc.relation.ispartof | Aims Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Simpson-type inequalities | en_US |
dc.subject | convex functions | en_US |
dc.subject | fractional integrals | en_US |
dc.subject | Riemann-Liouville fractional integrals | en_US |
dc.subject | tempered fractional integrals | en_US |
dc.title | Simpson-type inequalities by means of tempered fractional integrals | en_US |
dc.type | Article | en_US |