Performance optimization of PEM electrolyzers: An experimental and Taguchi-based approach

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, the performance of a proton exchange membrane (PEM) water electrolyzer with an active area of 9 cm2 was investigated under various operating conditions. At the anode, a three-layer titanium cross-mesh along with a fiber felt structure is employed. A total of twenty-seven experiments are conducted according to Taguchi's design of experiments to investigate extremes of operating temperature (40 degrees C, 60 degrees C, 80 degrees C), clamping torque (5 Nm, 7 Nm, 10 Nm), and water flow rates (10, 20, 30 mL/min) on hydrogen production and current density. From these experiments, it was noticed that temperature has the most notable influence by enhancing reaction kinetics and membrane conductivity. Clamping torque improves the electrode-membrane contacts and reduces internal resistance. Water flow rates have an effect on membrane hydration and gas removal, although somewhat less so. The three-layer mesh structure enables effective water distribution and gas evacuation, leading to lower overvoltage and steady operation. The best results came at 80 degrees C, torque of 10 Nm, and flow rate of 10 mL/min. Thus, the findings emphasize the dominant role of temperature and show that clamping torque should not only be regarded as a mechanical factor but also as an electrochemically active design factor in PEM electrolyzer design.

Açıklama

Anahtar Kelimeler

PEM water electrolyzer, Clamping torque, Water flow rate, Taguchi method, Temperature effect, Electrochemical performance

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

152

Sayı

Künye