An Investigation of Deep Wear Status Assessment of AISI 329 Material Under Green Nanofluid Conditions
Küçük Resim Yok
Tarih
2025
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
One of the main goals in sustainability is to reduce the environmental effects of boundary and mixed lubrication on rubbing surfaces. Petroleum-based fluids are at the center of environmental concerns and have attracted the attention of researchers in recent years. Vegetable-based oils are a good alternative to petroleum-based oils, and their tribological performance is a matter of curiosity. For the last 10 years, nanoparticle additives have been used to increase the tribological effect of plant-based oils. Green tribology is an integrated concept that includes the terms nanotribology and biotribology. In this study, nanofluid was prepared by adding SiO2 and TiO2 nanoparticles into the vegetable-based oil to examine green tribology performance. Friction/wear tests were applied to AISI 329 stainless steel material with a ball-on-disc tester. In the green tribology performance evaluation, pH, thermal conductivity, surface roughness, topography, microhardness deviations, coefficient of friction (CoF), track width, SEM analysis, and power consumption results were taken into consideration. As a result of the tests, the SiO2 nanofluid condition provided a reduction of 40.76%, 13.69%, 66.77%, 5.98% in surface roughness, microhardness, CoF, track width, and power consumption results, respectively, compared to the dry condition. In other words, the SiO2 green nanofluid condition exhibited superior performance compared to other conditions in all performance criteria.
Açıklama
Anahtar Kelimeler
Green tribology, Nanofluid, Surface integrity, Wear, AISI 329
Kaynak
Arabian Journal For Scienceand Engineering
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
50
Sayı
17