Anomaly-Based Intrusion Detection From Network Flow Features Using Variational Autoencoder
dc.authorid | Zavrak/0000-0001-6950-8927 | |
dc.authorwosid | Zavrak/C-6702-2014 | |
dc.authorwosid | ISKEFIYELI, Murat/AAC-3406-2021 | |
dc.contributor.author | Zavrak, Sultan | |
dc.contributor.author | Iskefiyeli, Murat | |
dc.date.accessioned | 2021-12-01T18:48:12Z | |
dc.date.available | 2021-12-01T18:48:12Z | |
dc.date.issued | 2020 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | The rapid increase in network traffic has recently led to the importance of flow-based intrusion detection systems processing a small amount of traffic data. Furthermore, anomaly-based methods, which can identify unknown attacks are also integrated into these systems. In this study, the focus is concentrated on the detection of anomalous network traffic (or intrusions) from flow-based data using unsupervised deep learning methods with semi-supervised learning approach. More specifically, Autoencoder and Variational Autoencoder methods were employed to identify unknown attacks using flow features. In the experiments carried out, the flow-based features extracted out of network traffic data, including typical and different types of attacks, were used. The Receiver Operating Characteristics (ROC) and the area under ROC curve, resulting from these methods were calculated and compared with One-Class Support Vector Machine. The ROC curves were examined in detail to analyze the performance of the methods in various threshold values. The experimental results show that Variational Autoencoder performs, for the most part, better than Autoencoder and One-Class Support Vector Machine. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [2211] | en_US |
dc.description.sponsorship | The work of Sultan Zavrak was supported by the Scienti~c and Technological Research Council of Turkey (TUBITAK) through the 2211/C Ph.D. Scholarship Programme for Priority Areas. | en_US |
dc.identifier.doi | 10.1109/ACCESS.2020.3001350 | |
dc.identifier.endpage | 108358 | en_US |
dc.identifier.issn | 2169-3536 | |
dc.identifier.scopus | 2-s2.0-85086985318 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 108346 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2020.3001350 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10478 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000544044400003 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Access | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Intrusion detection | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Telecommunication traffic | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Anomaly detection | en_US |
dc.subject | Computer hacking | en_US |
dc.subject | Flow anomaly detection | en_US |
dc.subject | intrusion detection | en_US |
dc.subject | deep learning | en_US |
dc.subject | variational autoencoder | en_US |
dc.subject | semi-supervised learning | en_US |
dc.subject | Detection System | en_US |
dc.title | Anomaly-Based Intrusion Detection From Network Flow Features Using Variational Autoencoder | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10478.pdf
- Boyut:
- 7.11 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text