Advancement of the search process of salp swarm algorithm for global optimization problems

dc.authoridArya, Yogendra/0000-0003-4661-1950
dc.authorwosidArya, Yogendra/I-8805-2019
dc.contributor.authorcelik, Emre
dc.contributor.authorOzturk, Nihat
dc.contributor.authorArya, Yogendra
dc.date.accessioned2021-12-01T18:49:29Z
dc.date.available2021-12-01T18:49:29Z
dc.date.issued2021
dc.department[Belirlenecek]en_US
dc.description.abstractThis paper propounds a modified version of the salp swarm algorithm (mSSA) for solving optimization problems more prolifically. This technique is refined from the base version with three simple but effective modifications. In the first one, the most important parameter in SSA responsible for balancing exploration and exploitation is chaotically changed by embedding a sinusoidal map in it to catch a better balance between exploration and exploitation from the first iteration until the last. As a short falling, SSA can't exchange information amongst leaders of the chain. Therefore, a mutualistic relationship between two leader salps is included in mSSA to raise its search performance. Additionally, a random technique is systematically applied to the follower salps to introduce diversity in the chain. This can be since there may be some salps in the chain that do not necessarily follow the leader for exploring unvisited areas of the search space. Several test problems are solved by the advocated approach and results are presented in comparison with the relevant results in the available literature. It is ascertained that mSSA, despite its simplicity, significantly outperforms not only the basic SSA but also numerous recent algorithms in terms of fruitful solution precision and convergent trend line.en_US
dc.identifier.doi10.1016/j.eswa.2021.115292
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85107690564en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2021.115292
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10730
dc.identifier.volume182en_US
dc.identifier.wosWOS:000688432600010en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectModified algorithmen_US
dc.subjectChaos theoryen_US
dc.subjectSinusoidal mapen_US
dc.subjectMutualismen_US
dc.subjectGlobal optimizationen_US
dc.subjectSymbiotic Organisms Searchen_US
dc.subjectPid Controlleren_US
dc.subjectPerformance Analysisen_US
dc.subjectEfficient Designen_US
dc.titleAdvancement of the search process of salp swarm algorithm for global optimization problemsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
10730.pdf
Boyut:
3.41 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text