From octonions to composition superalgebras via tensor categories
dc.authorid | Sayin, Umut/0000-0003-3648-1881 | en_US |
dc.authorid | Daza-Garcia, Alberto/0000-0002-6438-802X | en_US |
dc.authorscopusid | 57219312842 | en_US |
dc.authorscopusid | 7003818649 | en_US |
dc.authorscopusid | 57209736240 | en_US |
dc.authorwosid | Sayin, Umut/HGB-7576-2022 | en_US |
dc.contributor.author | Daza-Garcia, Alberto | |
dc.contributor.author | Elduque, Alberto | |
dc.contributor.author | Sayin, Umut | |
dc.date.accessioned | 2024-08-23T16:03:28Z | |
dc.date.available | 2024-08-23T16:03:28Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | The nontrivial unital composition superalgebras, of dimension 3 and 6, which exist only in characteristic 3, are obtained from the split Cayley algebra and its order 3 automorphisms, by means of the process of semisimplification of the symmetric tensor category of representations of the cyclic group of order 3. Connections with the extended Freudenthal magic square in characteristic 3, that contains some exceptional Lie superalgebras specific of this characteristic are discussed too. In the process, precise recipes to go from (nonassociative) algebras in this tensor category to the corresponding superalgebras are given. | en_US |
dc.description.sponsorship | AEI/FEDER, UE; MCIN/AEI [E22_20R]; ERDF A way of making Europe; Gobierno de Aragon, Grupo de investigacion Algebra y Geometria [MTM2017-83506-C2-1-P]; FPI grant; TUBITAK 2219; [PID2021-123461NB-C21]; [PRE2018-087018] | en_US |
dc.description.sponsorship | The first two authors have been supported by grant MTM2017-83506-C2-1-P (AEI/FEDER, UE) , by grant PID2021-123461NB-C21, funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe, and by grant E22_20R (Gobierno de Aragon, Grupo de investigacion Algebra y Geometria) . The first author also acknowledges support by the FPI grant PRE2018-087018. The third author has been supported by grant TUBITAK 2219. | en_US |
dc.identifier.doi | 10.4171/RMI/1408 | |
dc.identifier.endpage | 152 | en_US |
dc.identifier.issn | 0213-2230 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85187010175 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 129 | en_US |
dc.identifier.uri | https://doi.org/10.4171/RMI/1408 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13767 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:001168226500001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | European Mathematical Soc-Ems | en_US |
dc.relation.ispartof | Revista Matematica Iberoamericana | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | octonions | en_US |
dc.subject | superalgebras | en_US |
dc.subject | tensor category | en_US |
dc.subject | semisimplification | en_US |
dc.subject | Verlinde category | en_US |
dc.subject | Magic Square | en_US |
dc.title | From octonions to composition superalgebras via tensor categories | en_US |
dc.type | Article | en_US |