General (k, p)-Riemann-Liouville fractional integrals

dc.authoridBenaissa, Bouharket/0000-0002-1195-6169;en_US
dc.authorscopusid57205103028en_US
dc.authorscopusid57038541500en_US
dc.authorwosidBenaissa, Bouharket/AAG-1181-2021en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.contributor.authorBenaissa, Bouharket
dc.contributor.authorBudak, Hüseyin
dc.date.accessioned2024-08-23T16:03:44Z
dc.date.available2024-08-23T16:03:44Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThe main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters k and p which is determined over the (k, p)-gamma function. In particular, we present the harmonic, geometric and arithmetic (k, p)- Riemann-Liouville fractional integrals. When p = k, these integrals reduce to k-Riemann-Liouville fractional integrals. Some formulas relating to general (k, p)-Riemann-Liouville fraction integrals are also given.en_US
dc.identifier.doi10.2298/FIL2408579B
dc.identifier.endpage2586en_US
dc.identifier.issn0354-5180
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85188505105en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage2579en_US
dc.identifier.urihttps://doi.org/10.2298/FIL2408579B
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13892
dc.identifier.volume38en_US
dc.identifier.wosWOS:001189136100001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherUniv Nis, Fac Sci Mathen_US
dc.relation.ispartofFilomaten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneral (k, p)-Riemann-Liouvilleen_US
dc.subject(k,p)-gamma functionen_US
dc.subjectfractional integralsen_US
dc.titleGeneral (k, p)-Riemann-Liouville fractional integralsen_US
dc.typeArticleen_US

Dosyalar