Newton-type inequalities associated with convex functions via quantum calculus

dc.authorscopusid57224892569en_US
dc.authorscopusid12808195300en_US
dc.authorscopusid35303422100en_US
dc.authorscopusid57038541500en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.contributor.authorLuangboon, Waewta
dc.contributor.authorNonlaopon, Kamsing
dc.contributor.authorSarıkaya, Mehmet Zeki
dc.contributor.authorBudak, Hüseyin
dc.date.accessioned2024-08-23T16:03:51Z
dc.date.available2024-08-23T16:03:51Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractIn this paper, we firstly establish an identity by using the notions of quantum derivatives and integrals. Using this quantum identity, quantum Newton -type inequalities associated with convex functions are proved. We also show that the newly established inequalities can be recaptured into some existing inequalities by taking q -> 1(-) . Finally, we give mathematical examples of convex functions to verify the newly established inequalities.en_US
dc.identifier.doi10.18514/MMN.2024.4203
dc.identifier.endpage398en_US
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85196072473en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage383en_US
dc.identifier.urihttps://doi.org/10.18514/MMN.2024.4203
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13948
dc.identifier.volume25en_US
dc.identifier.wosWOS:001240590000028en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherUniv Miskolc Inst Mathen_US
dc.relation.ispartofMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNewton-type inequalityen_US
dc.subjectconvex functionsen_US
dc.subjectquantum calculusen_US
dc.titleNewton-type inequalities associated with convex functions via quantum calculusen_US
dc.typeArticleen_US

Dosyalar