Analysis and numerical computations of the fractional regularized long-wave equation with damping term

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This study explores the fractional damped generalized regularized long-wave equation in the sense of Caputo, Atangana-Baleanu, and Caputo-Fabrizio fractional derivatives. With the aid of fixed-point theorem in the Atangana-Baleanu fractional derivative with Mittag-Leffler-type kernel, we show the existence and uniqueness of the solution to the damped generalized regularized long-wave equation. The modified Laplace decomposition method (MLDM) defined in the sense of Caputo, Atangana-Baleanu, and Caputo-Fabrizio (in the Riemann sense) operators is used in securing the approximate-analytical solutions of the nonlinear model. The numerical simulations of the obtained solutions are performed with different suitable values of rho, which is the order of fractional parameter. We have seen the effect of the various parameters and variables on the displacement in figures.

Açıklama

Anahtar Kelimeler

Atangana-Baleanu derivative, Caputo derivative, Caputo-Fabrizio derivative, existence, nonlinear waves, uniqueness, Kernel, Derivatives, Frame, Model

Kaynak

Mathematical Methods In The Applied Sciences

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

44

Sayı

9

Künye