Analysis and numerical computations of the fractional regularized long-wave equation with damping term
Yükleniyor...
Dosyalar
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study explores the fractional damped generalized regularized long-wave equation in the sense of Caputo, Atangana-Baleanu, and Caputo-Fabrizio fractional derivatives. With the aid of fixed-point theorem in the Atangana-Baleanu fractional derivative with Mittag-Leffler-type kernel, we show the existence and uniqueness of the solution to the damped generalized regularized long-wave equation. The modified Laplace decomposition method (MLDM) defined in the sense of Caputo, Atangana-Baleanu, and Caputo-Fabrizio (in the Riemann sense) operators is used in securing the approximate-analytical solutions of the nonlinear model. The numerical simulations of the obtained solutions are performed with different suitable values of rho, which is the order of fractional parameter. We have seen the effect of the various parameters and variables on the displacement in figures.
Açıklama
Anahtar Kelimeler
Atangana-Baleanu derivative, Caputo derivative, Caputo-Fabrizio derivative, existence, nonlinear waves, uniqueness, Kernel, Derivatives, Frame, Model
Kaynak
Mathematical Methods In The Applied Sciences
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
44
Sayı
9