SEAM CARVING BASED IMAGE RESIZING DETECTION USING HYBRID FEATURES
dc.contributor.author | Şentürk, Zehra Karapınar | |
dc.contributor.author | Akgün, Devrim | |
dc.date.accessioned | 2020-04-30T23:31:47Z | |
dc.date.available | 2020-04-30T23:31:47Z | |
dc.date.issued | 2017 | |
dc.department | DÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | WOS: 000417121700023 | en_US |
dc.description.abstract | Detection of seam carving-based digital image resizing is a challenging task in image processing field since the method investigates the images on hand semantically. Resizing with seam carving is realized by inserting or removing relatively unimportant pixel paths to/from the images and so the changes in image content are mostly unnoticeable. Local Binary Patterns (LBP), a visual descriptor, unearths local changes in image texture. Therefore, using LBP transform of the images besides intensity values contributes to the detection ratio. In this paper, we proposed a hybrid detection mechanism for more accurate seam carving detection especially in low scaling ratios. We extracted LBP-based and non-LBP based features and trained a Support Vector Machine (SVM) with sixty features. We achieved approximately 9 % improvement in low detection ratios. The experimental results show that more satisfactory detection ratios can be obtained by the proposed hybrid approach. | en_US |
dc.description.sponsorship | Sakarya UniversitySakarya University [2015-50-02-019] | en_US |
dc.description.sponsorship | This work was supported by Research Fund of the Sakarya University. Project Number: 2015-50-02-019 | en_US |
dc.identifier.doi | 10.17559/TV-20160804121351 | en_US |
dc.identifier.endpage | 1832 | en_US |
dc.identifier.issn | 1330-3651 | |
dc.identifier.issn | 1848-6339 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 1825 | en_US |
dc.identifier.uri | https://doi.org/10.17559/TV-20160804121351 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/4471 | |
dc.identifier.volume | 24 | en_US |
dc.identifier.wos | WOS:000417121700023 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Univ Osijek, Tech Fac | en_US |
dc.relation.ispartof | Tehnicki Vjesnik-Technical Gazette | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | forgery detection | en_US |
dc.subject | Local Binary Patterns | en_US |
dc.subject | seam carving | en_US |
dc.subject | Support Vector Machines | en_US |
dc.title | SEAM CARVING BASED IMAGE RESIZING DETECTION USING HYBRID FEATURES | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 4471.pdf
- Boyut:
- 1.25 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text