A fuzzy image clustering method based on an improved backtracking search optimization algorithm with an inertia weight parameter
Yükleniyor...
Dosyalar
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, we introduced a novel image clustering method based on combination of the classical Fuzzy C-Means (FCM) algorithm and Backtracking Search optimization Algorithm (BSA). The image clustering was achieved by minimizing the objective function of FCM with BSA. In order to improve the local search ability of the new algorithm, an inertia weight parameter (w) was proposed for BSA. The improvement was accomplished by using w in the steps of the determination of the search-direction matrix of BSA and the new algorithm was named as w-BSAFCM. In order to show the effectiveness of the new algorithm, FCM was also combined with the general forms of BSA in the same manner and three benchmark images were clustered by utilizing these algorithms. The obtained results were analyzed according to the objective function and Davies-Bouldin index values to compare the performances of the algorithms. According to the results, it was shown that w-BSAFCM can be effectively be used for solving image clustering problem. (C) 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
Açıklama
WOS: 000474400800003
Anahtar Kelimeler
BSA, FCM, Image clustering
Kaynak
Journal Of King Saud University-Computer And Information Sciences
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
31
Sayı
3