Detection of Intrusions with Machine Learning Methods
dc.authorid | ALBAYRAK, AHMET/0000-0002-2166-1102 | |
dc.contributor.author | Bostancı, Beyzanur | |
dc.contributor.author | Albayrak, Ahmet | |
dc.date.accessioned | 2023-07-26T11:57:43Z | |
dc.date.available | 2023-07-26T11:57:43Z | |
dc.date.issued | 2021 | |
dc.department | DÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | 2nd International Informatics and Software Engineering Conference (IISEC) - Artificial Intelligence for Digital Transformation -- DEC 16-17, 2021 -- Ankara, TURKEY | en_US |
dc.description.abstract | Today, especially with the emergence of social networks and IoT technologies, big data has entered the literature. With the development of technology, the size of the data has increased and accordingly data security gaps have emerged. In this study, Support Vector Machines and Random Forest algorithms, which are Supervised Machine Learning Algorithms, were used to analyze a data set consisting of unauthorized network logins. As a result of the experimental studies, it was observed that both algorithms produced good results, but the Random Forest approach produced better results. | en_US |
dc.description.sponsorship | IEEE Turkey Sect | en_US |
dc.identifier.doi | 10.1109/IISEC54230.2021.9672361 | |
dc.identifier.isbn | 978-1-6654-0759-5 | |
dc.identifier.scopus | 2-s2.0-85125325170 | en_US |
dc.identifier.uri | https://doi.org/10.1109/IISEC54230.2021.9672361 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13282 | |
dc.identifier.wos | WOS:000841548300013 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Bostancı, Beyzanur | |
dc.institutionauthor | Albayrak, Ahmet | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2nd International Informatics and Software Engineering Conference (Iisec) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | $2023V1Guncelleme$ | en_US |
dc.subject | Big Data; Support Vector Machine; Random Forest; Machine Learning | en_US |
dc.subject | Big Data | en_US |
dc.title | Detection of Intrusions with Machine Learning Methods | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 13282.pdf
- Boyut:
- 310.36 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text