Improving YOLO Detection Performance of Autonomous Vehicles in Adverse Weather Conditions Using Metaheuristic Algorithms
dc.authorid | ALTUN, Yusuf/0000-0002-2099-0959 | en_US |
dc.authorid | PARLAK (PhD), CEVAHIR/0000-0002-5500-7379 | en_US |
dc.authorid | ozcan, ibrahim/0000-0001-9471-5119 | en_US |
dc.authorscopusid | 59217106500 | en_US |
dc.authorscopusid | 25031391400 | en_US |
dc.authorscopusid | 55807221400 | en_US |
dc.authorwosid | ALTUN, Yusuf/AAA-9929-2020 | en_US |
dc.contributor.author | Ozcan, Ibrahim | |
dc.contributor.author | Altun, Yusuf | |
dc.contributor.author | Parlak, Cevahir | |
dc.date.accessioned | 2024-08-23T16:03:37Z | |
dc.date.available | 2024-08-23T16:03:37Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | Despite the rapid advances in deep learning (DL) for object detection, existing techniques still face several challenges. In particular, object detection in adverse weather conditions (AWCs) requires complex and computationally costly models to achieve high accuracy rates. Furthermore, the generalization capabilities of these methods struggle to show consistent performance under different conditions. This work focuses on improving object detection using You Only Look Once (YOLO) versions 5, 7, and 9 in AWCs for autonomous vehicles. Although the default values of the hyperparameters are successful for images without AWCs, there is a need to find the optimum values of the hyperparameters in AWCs. Given the many numbers and wide range of hyperparameters, determining them through trial and error is particularly challenging. In this study, the Gray Wolf Optimizer (GWO), Artificial Rabbit Optimizer (ARO), and Chimpanzee Leader Selection Optimization (CLEO) are independently applied to optimize the hyperparameters of YOLOv5, YOLOv7, and YOLOv9. The results show that the preferred method significantly improves the algorithms' performances for object detection. The overall performance of the YOLO models on the object detection for AWC task increased by 6.146%, by 6.277% for YOLOv7 + CLEO, and by 6.764% for YOLOv9 + GWO. | en_US |
dc.description.sponsorship | Duzce University Scientific Research Projects Coordination Office [BAP-2020.06.01.1060] | en_US |
dc.description.sponsorship | This research was funded by Duzce University Scientific Research Projects Coordination Office with the Scientific Research Project grant number BAP-2020.06.01.1060. | en_US |
dc.identifier.doi | 10.3390/app14135841 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.issue | 13 | en_US |
dc.identifier.scopus | 2-s2.0-85198479179 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.3390/app14135841 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13828 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:001269153900001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Applied Sciences-Basel | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | ARO | en_US |
dc.subject | CLEO | en_US |
dc.subject | DAWN dataset | en_US |
dc.subject | deep learning | en_US |
dc.subject | GWO | en_US |
dc.subject | object detection | en_US |
dc.subject | RTTS dataset | en_US |
dc.subject | YOLOv5 | en_US |
dc.subject | YOLOv7 | en_US |
dc.subject | YOLOv9 | en_US |
dc.subject | Grey Wolf Optimizer | en_US |
dc.title | Improving YOLO Detection Performance of Autonomous Vehicles in Adverse Weather Conditions Using Metaheuristic Algorithms | en_US |
dc.type | Article | en_US |