On the generalized Ostrowski type inequalities for co-ordinated convex functions

dc.authorscopusid35303422100en_US
dc.contributor.authorSarıkaya, Mehmet Zeki
dc.date.accessioned2024-08-23T16:03:48Z
dc.date.available2024-08-23T16:03:48Z
dc.date.issued2023en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThe purpose of this article is to establish some generalized Ostrowski type inequalities and integral inequalities in the coordinate plane for convex functions of 2 variables. For this, we will specify a generalized identity, and with the help of this integral identity, we will examine the Ostrowski, trapezoid, and midpoint type integral inequalities, including Riemann integral and Riemann-Liouville fractional integral. In this way, we aim to contribute to the generalization of integral inequalities, an important topic in mathematical analysis.en_US
dc.identifier.doi10.2298/FIL2322351S
dc.identifier.endpage7366en_US
dc.identifier.issn0354-5180
dc.identifier.issue22en_US
dc.identifier.scopus2-s2.0-85159303597en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage7351en_US
dc.identifier.urihttps://doi.org/10.2298/FIL2322351S
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13900
dc.identifier.volume37en_US
dc.identifier.wosWOS:000976037800001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorSarikaya, Mehmet Zekien_US
dc.language.isoenen_US
dc.publisherUniv Nis, Fac Sci Mathen_US
dc.relation.ispartofFilomaten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRiemann-Liouville fractional integralsen_US
dc.subjectConvex functionen_US
dc.subjectCo-ordinated convex mappingen_US
dc.subjectHermite-Hadamard inequalityen_US
dc.subjectDifferentiable Mappingsen_US
dc.subjectReal Numbersen_US
dc.titleOn the generalized Ostrowski type inequalities for co-ordinated convex functionsen_US
dc.typeArticleen_US

Dosyalar