Gated independence in graphs
dc.authorscopusid | 35611132200 | en_US |
dc.authorscopusid | 56462806000 | en_US |
dc.authorscopusid | 57208254403 | en_US |
dc.contributor.author | Civan, Yusuf | |
dc.contributor.author | Deniz, Zakir | |
dc.contributor.author | Yetim, Mehmet Akif | |
dc.date.accessioned | 2024-08-23T16:04:50Z | |
dc.date.available | 2024-08-23T16:04:50Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | If G = ( V , E ) is a (finite and simple) graph, we call an independent set X a gated independent set in G if for each x is an element of X , there exists a neighbor y of x such that ( X \ { x } ) boolean OR{ y } is an independent set in G . We define the gated independence number gi( G ) of G to be the maximum cardinality of a gated independent set in G . We demonstrate that the gated independence number is closely related to both matching and domination parameters of graphs. We prove that the inequalities im( G ) gi( G ) m ur ( G ) hold for every graph G , where im( G ) and m ur ( G ) denote the induced and uniquely restricted matching numbers of G . On the other hand, we show that gamma i ( G ) gi( G ) and gamma p r ( G ) 2 gi( G ) for every graph G without any isolated vertex, where gamma i ( G ) and gamma p r ( G ) denote the independence and paired domination numbers. Furthermore, we provide bounds on the gated independence number involving the order, size and maximum degree. In particular, we prove that gi( G ) 5 n for every n -vertex subcubic graph G without any isolated vertex or any component isomorphic to K 3 , 3 , and gi( B ) 3 n 8 for every n -vertex connected cubic bipartite graph B . (c) 2024 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.dam.2024.04.011 | |
dc.identifier.endpage | 138 | en_US |
dc.identifier.issn | 0166-218X | |
dc.identifier.issn | 1872-6771 | |
dc.identifier.scopus | 2-s2.0-85192100804 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 121 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.dam.2024.04.011 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14387 | |
dc.identifier.volume | 353 | en_US |
dc.identifier.wos | WOS:001238806400001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Discrete Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Induced matching | en_US |
dc.subject | Uniquely restricted matching | en_US |
dc.subject | Gated independent set | en_US |
dc.subject | Domination | en_US |
dc.subject | Lower Bounds | en_US |
dc.title | Gated independence in graphs | en_US |
dc.type | Article | en_US |