Employing machine learning based malicious signal detection for cognitive radio networks

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In cognitive radio networks, the empty spectrum that is also named as spectrum hole is detected with the help of spectrum sensing techniques. Energy detection is the most utilized spectrum sensing technique owing to its low complexity. In the energy detection technique, a spectrum hole is detected with a predefined threshold. In this article, machine learning based malicious signal detection is employed for cognitive radio networks. The design of cognitive radio users and network environment is simulated with Riverbed simulation software. The received signal is controlled whether it is a malicious signal or just a secure sensing signal. The fuzzy logic based system is utilized for the security categorization of spectrum sensing signals as malicious, suspicious, and secure sensing signals. Fuzzy logic parameters are taken from the machine learning features that are chosen as the most effective 3 features among all 49 features. The security of primary users is enhanced when compared to other schemes in the literature. The results of the proposed machine learning based malicious signal detection system are validated with the results acquired from the fuzzy logic based approach. The random forest method gives the best results among all machine learning methods for the detection of signals.

Açıklama

Anahtar Kelimeler

Cognitive Radio Networks; Fuzzy Logic; Machine Learning; Security, Spectrum Access; Security; Noma

Kaynak

Concurrency and Computation-Practice & Experience

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

35

Sayı

2

Künye