Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Emerald Group Publishing Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Purpose This paper aims to examine the performance of the machining parameters used in the hard-turning process of DIN 1.2738 mold steel and identify the optimum machining conditions. Design/methodology/approach Experiments were carried out via the Taguchi L18 orthogonal array. The evaluation of the experimental results was based on the signal/noise ratio. The effect levels of the control factors on the surface roughness and flank wear were specified with analysis of variance performed. Two different multiple regression analyses (linear and quadratic) were conducted for the experimental results. A higher correlation coefficient (R-2) was obtained with the quadratic regression model, which showed values of 0.97 and 0.95 for Ra and Vb, respectively. Findings The experimental results indicated that generally better results were obtained with the TiAlN-coated tools, in respect to both surface roughness and flank wear. The Taguchi analysis found the optimum results for surface roughness to be with the cutting tools of coated carbide using physical vapor deposition (PVD), a cutting speed of 160 m/min and a feed rate of 0.1 mm/rev, and for flank wear, with cutting tools of coated carbide using PVD, a cutting speed of 80 m/min and a feed rate of 0.1 mm/rev. The results of calculations and confirmation tests for Ra were 0.595 and 0.570 mu m, respectively, and for the Vb, 0.0244 and 0.0256 mm, respectively. Developed quadratic regression models demonstrated a very good relationship. Originality/value Optimal parameters for both Ra and Vb were obtained with the TiAlN-coated tool using PVD. Finally, confirmation tests were performed and showed that the optimization had been successfully implemented.

Açıklama

WOS: 000456513000004

Anahtar Kelimeler

Surface roughness, Taguchi method, Flank wear, Hard machining

Kaynak

Sensor Review

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

39

Sayı

1

Künye