Estimation of specific gravity with penetration and penetration index parameters by artificial neural network
dc.contributor.author | Serin, Sercan | |
dc.contributor.author | Karahançer, Şebnem | |
dc.contributor.author | Erişkin, Ekinhan | |
dc.contributor.author | Morova, Nihat | |
dc.contributor.author | Saltan, Mehmet | |
dc.contributor.author | Terzi, Serdal | |
dc.date.accessioned | 2020-04-30T13:32:26Z | |
dc.date.available | 2020-04-30T13:32:26Z | |
dc.date.issued | 2017 | |
dc.department | DÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü | en_US |
dc.description.abstract | Specific Gravity of the bitumen changes according to the ambient temperature. Different specific gravity values can be calculated at different temperature. Estimating models like Artificial Neural Network - ANN could be very useful to obtain the specific gravity value uniform. Specific gravity values obtained from Long-Term Pavement Performance - LTPP were estimated with artificial neural networks. Penetration and Penetration Index of binder were used for estimating the specific gravity of the bitumen. As a result, ANN get 84% of R2 between obtained and estimated values. | en_US |
dc.identifier.doi | 10.21533/pen.v5i2.106 | en_US |
dc.identifier.endpage | 164 | en_US |
dc.identifier.issn | 2303-4521 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 161 | en_US |
dc.identifier.uri | https://dx.doi.org/10.21533/pen.v5i2.106 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/291 | |
dc.identifier.volume | 5 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | International University of Sarajevo | en_US |
dc.relation.ispartof | Periodicals of Engineering and Natural Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artifical neural network; Penetration; Penetration index; Specific gravity | en_US |
dc.title | Estimation of specific gravity with penetration and penetration index parameters by artificial neural network | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 0291.pdf
- Boyut:
- 342.74 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text