Email spam detection using hierarchical attention hybrid deep learning method

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Email is one of the most widely used ways to communicate, with millions of people and businesses relying on it to communicate and share knowledge and information on a daily basis. Nevertheless, the rise in email users has occurred a dramatic increase in spam emails in recent years. Considering the escalating number of spam emails, it has become crucial to devise effective strategies for spam detection. To tackle this challenge, this article proposes a novel technique for email spam detection that is based on a combination of convolutional neural networks, gated recurrent units, and attention mechanisms. During system training, the network is selectively focused on necessary parts of the email text. The usage of convolution layers to extract more meaningful, abstract, and generalizable features by hierarchical representation is the major contribution of this study. Additionally, this contribution incorporates cross-dataset evaluation, which enables the generation of more independent performance results from the model's training dataset. According to cross-dataset evaluation results, the proposed technique advances the results of the present attention-based techniques by utilizing temporal convolutions, which give us more flexible receptive field sizes are utilized. The suggested technique's findings are compared to those of state-of-the-art models and show that our approach outperforms them.

Açıklama

Anahtar Kelimeler

Hierarchical Attentional Hybrid Neural, Networks, Email spam detection, Natural Language Processing, FastText, Attention mechanisms, Intrusion Detection, Detection Model, Network, Classification

Kaynak

Expert Systems With Applications

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

233

Sayı

Künye