Jordan Derivations of Special Subrings of Matrix Rings
dc.contributor.author | Sayın, Umut | |
dc.contributor.author | Kuzucuoğlu, Feride | |
dc.date.accessioned | 2020-04-30T23:18:48Z | |
dc.date.available | 2020-04-30T23:18:48Z | |
dc.date.issued | 2019 | |
dc.department | DÜ, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description | WOS: 000460543000007 | en_US |
dc.description.abstract | Let K be a 2-torsion free ring with identity and R-n (K, J) be the ring of all n x n matrices over K such that the entries on and above the main diagonal are elements of an ideal J of K. We describe all Jordan derivations of the matrix ring R-n (K, J) in this paper. The main result states that every Jordan derivation Delta of R-n (K, J) is of the form Delta = D + Omega, where D is a derivation of R-n (K, J) and Omega is an extremal Jordan derivation of R-n (K, J). | en_US |
dc.identifier.doi | 10.1142/S1005386719000087 | en_US |
dc.identifier.endpage | 92 | en_US |
dc.identifier.issn | 1005-3867 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 83 | en_US |
dc.identifier.uri | https://doi.org/10.1142/S1005386719000087 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/3532 | |
dc.identifier.volume | 26 | en_US |
dc.identifier.wos | WOS:000460543000007 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | Algebra Colloquium | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | matrix ring | en_US |
dc.subject | derivation | en_US |
dc.subject | Jordan derivation | en_US |
dc.title | Jordan Derivations of Special Subrings of Matrix Rings | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 3532.pdf
- Boyut:
- 109.14 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text