SOME ALGEBRAIC RELATIONS ON INTEGER SEQUENCES INVOLVING OBLONG AND BALANCING NUMBERS
Küçük Resim Yok
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Charles Babbage Res Ctr
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers.
Açıklama
WOS: 000380622200002
Anahtar Kelimeler
Fibonacci numbers, Lucas numbers, Pell numbers, oblong numbers, balancing numbers, binary linear recurrences, circulant matrix, spectral norm, simple continued fraction expansion, cross-ratio
Kaynak
Ars Combinatoria
WoS Q Değeri
Q4
Scopus Q Değeri
Q4
Cilt
128