SOME ALGEBRAIC RELATIONS ON INTEGER SEQUENCES INVOLVING OBLONG AND BALANCING NUMBERS

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Charles Babbage Res Ctr

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers.

Açıklama

WOS: 000380622200002

Anahtar Kelimeler

Fibonacci numbers, Lucas numbers, Pell numbers, oblong numbers, balancing numbers, binary linear recurrences, circulant matrix, spectral norm, simple continued fraction expansion, cross-ratio

Kaynak

Ars Combinatoria

WoS Q Değeri

Q4

Scopus Q Değeri

Q4

Cilt

128

Sayı

Künye