Generalization of the bisection method and its applications in nonlinear equations
dc.authorid | Hussain, Rashida/0000-0003-4507-6255 | en_US |
dc.authorid | Budak, Huseyin/0000-0001-8843-955X | en_US |
dc.authorscopusid | 57193538409 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorscopusid | 57193505193 | en_US |
dc.authorscopusid | 58149184400 | en_US |
dc.authorwosid | Hussain, Rashida/KCY-5813-2024 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.contributor.author | Gulshan, Ghazala | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Hussain, Rashida | |
dc.contributor.author | Sadiq, Asad | |
dc.date.accessioned | 2024-08-23T16:04:04Z | |
dc.date.available | 2024-08-23T16:04:04Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | The aim of the current work is to generalize the well-known bisection method using quantum calculus approach. The results for different values of quantum parameter q are analyzed, and the rate of convergence for each q ? (0,1) is also determined. Some physical problems in engineering are resolved using the QBM technique for various values of the quantum parameter q up to three iterations to examine the validity of the method. Furthermore, it is proven that QBM is always convergent and that for each interval there exists q ? (0,1) for which the first approximation of root coincides with the precise solution of the problem. | en_US |
dc.identifier.doi | 10.1186/s13662-023-03765-5 | |
dc.identifier.issn | 2731-4235 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85151308703 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1186/s13662-023-03765-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14052 | |
dc.identifier.volume | 2023 | en_US |
dc.identifier.wos | WOS:000959617000001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Advances in Continuous And Discrete Models | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonlinear equations | en_US |
dc.subject | Bisection method | en_US |
dc.title | Generalization of the bisection method and its applications in nonlinear equations | en_US |
dc.type | Article | en_US |