Artificial neural network based modelling of performance of a beta-type Stirling engine
dc.contributor.author | Özgören, Yaşar Önder | |
dc.contributor.author | Çetinkaya, Selim | |
dc.contributor.author | Sarıdemir, Suat | |
dc.contributor.author | Çiçek, Adem | |
dc.contributor.author | Kara, Fuat | |
dc.date.accessioned | 2020-04-30T22:39:40Z | |
dc.date.available | 2020-04-30T22:39:40Z | |
dc.date.issued | 2013 | |
dc.department | DÜ, Teknoloji Fakültesi, Makine ve İmalat Mühendisliği Bölümü | en_US |
dc.description | WOS: 000322197800003 | en_US |
dc.description.abstract | In this article, artificial neural network has been used in order to predict the power (P) and torque (T) values obtained from a beta-type Stirling engine that uses air as working fluid. Experimental data have been obtained for different charge pressures and hot source temperatures using ZrO2-coated and uncoated displacers. The closest artificial neural network results to experimental torque and power values were obtained with double hidden layer 5-13-9-1 and 5-13-7-1 network architectures, respectively. The best prediction values were obtained by Levenberg-Marquardt learning algorithm. Correlation coefficient (R-2) for the torque values were 0.998331 and 0.997231 for the training and test sets, respectively, while R-2 value for power values were 0.998331 and 0.997231 for the training and test sets, respectively. R-2 values show that the developed artificial neural network is an acceptable and powerful modelling technique in predicting the torque and power values of the beta-type Stirling engine. | en_US |
dc.identifier.doi | 10.1177/0954408912455763 | en_US |
dc.identifier.endpage | 177 | en_US |
dc.identifier.issn | 0954-4089 | |
dc.identifier.issn | 2041-3009 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 166 | en_US |
dc.identifier.uri | https://doi.org/10.1177/0954408912455763 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/2793 | |
dc.identifier.volume | 227 | en_US |
dc.identifier.wos | WOS:000322197800003 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sage Publications Ltd | en_US |
dc.relation.ispartof | Proceedings Of The Institution Of Mechanical Engineers Part E-Journal Of Process Mechanical Engineering | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Beta-type Stirling engine | en_US |
dc.subject | air | en_US |
dc.subject | artificial neural networks | en_US |
dc.subject | engine performance | en_US |
dc.title | Artificial neural network based modelling of performance of a beta-type Stirling engine | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 2793.pdf
- Boyut:
- 722.47 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text