Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications

dc.authoridNonlaopon, Kamsing/0000-0002-7469-5402
dc.authoridAli, Muhammad/0000-0002-1444-7888
dc.authoridZhao, Dafang/0000-0001-5216-9543
dc.authoridBudak, Hüseyin/0000-0001-8843-955X
dc.authorwosidAli, Muhammad Aamir/AAA-1831-2022
dc.authorwosidali, muhammad/GYR-3505-2022
dc.authorwosidNonlaopon, Kamsing/AAD-4363-2020
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022
dc.authorwosidAli, Muhammad/GXH-4405-2022
dc.contributor.authorZhao, Dafang
dc.contributor.authorAli, Muhammad Aamir
dc.contributor.authorLuangboon, Waewta
dc.contributor.authorBudak, Hüseyin
dc.contributor.authorNonlaopon, Kamsing
dc.date.accessioned2023-07-26T11:53:58Z
dc.date.available2023-07-26T11:53:58Z
dc.date.issued2022
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we prove a new quantum integral equality involving a parameter, left and right quantum derivatives. Then, we use the newly established equality and prove some new estimates of quantum Ostrowski, quantum midpoint, quantum trapezoidal and quantum Simpson's type inequalities for q-differentiable convex functions. It is also shown that the newly established inequalities are the refinements of the existing inequalities inside the literature. Finally, some examples and applications are given to illustrate the investigated results.en_US
dc.description.sponsorshipKey Projects of Educational Commission of Hubei Province of China [D20192501]; Open Fund of National Cryosphere Desert Data Center of China [2021kf03]; Foundation of Hubei Normal University [2021YJSKCSZY06, 2021056]; King Mongkut's University of Technology North Bangkok [KMUTNB-63-KNOW-21]en_US
dc.description.sponsorshipThe work was supported by Key Projects of Educational Commission of Hubei Province of China (Grant No. D20192501), Open Fund of National Cryosphere Desert Data Center of China (2021kf03), and Foundation of Hubei Normal University (Grant No. 2021YJSKCSZY06, 2021056). This work was also supported by King Mongkut's University of Technology North Bangkok. Contract no. KMUTNB-63-KNOW-21.en_US
dc.identifier.doi10.3390/fractalfract6030129
dc.identifier.issn2504-3110
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85130528199en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.3390/fractalfract6030129
dc.identifier.urihttps://hdl.handle.net/20.500.12684/12677
dc.identifier.volume6en_US
dc.identifier.wosWOS:000776508900001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorBudak, Hüseyin
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofFractal and Fractionalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz$2023V1Guncelleme$en_US
dc.subjectMidpoint Inequalities; Trapezoidal Inequalities; Ostrowski's Inequalities; Simpson's Inequalities; Quantum Calculus; Convex Functionsen_US
dc.subjectHermite-Hadamard Inequalities; Midpoint Type Inequalities; (Alphaen_US
dc.titleSome Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applicationsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
12677.pdf
Boyut:
354.03 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text