Comparative Study of Heart Disease Classification

dc.contributor.authorEkiz, Simge
dc.contributor.authorErdoğmuş, Pakize
dc.date.accessioned2020-04-30T22:41:09Z
dc.date.available2020-04-30T22:41:09Z
dc.date.issued2017
dc.departmentDÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.descriptionScientific Meeting on Electric Electronics, Computer Science, Biomedical Engineerings (EBBT) -- APR 20-21, 2017 -- Istanbul Arel Univ, Istanbul, TURKEYen_US
dc.descriptionWOS: 000413686600009en_US
dc.description.abstractThe aim of this paper is to compare two important machine learning platform results for the same dataset. With this aim, we conducted an experiment to classify heart disease both in Matlab(C) environment and WEKA(C), by using six different algorithms. Linear SVM, Quadratic SVM, Cubic SVM, Medium Gaussian SVM, Decision Tree and Ensemble Subspace Discriminant machine learning approaches are used for classifying the heart disease.en_US
dc.description.sponsorshipIEEE Turkey Sect, IEEE EMB, IEEEen_US
dc.identifier.isbn978-1-5386-0440-3
dc.identifier.urihttps://hdl.handle.net/20.500.12684/3132
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (Ebbt)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectheart diseaseen_US
dc.subjectUCI Machine Learningen_US
dc.subjectClassificationen_US
dc.subjectSupport Vector Machinesen_US
dc.subjectEnsemble Learningen_US
dc.subjectDecision Treeen_US
dc.titleComparative Study of Heart Disease Classificationen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
3132.pdf
Boyut:
386.21 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text