Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions
dc.authorid | SARIKAYA, Mehmet Zeki/0000-0002-6165-9242 | |
dc.authorwosid | Zhao, Dafang/AAC-3583-2021 | |
dc.authorwosid | SARIKAYA, Mehmet Zeki/ABI-5543-2020 | |
dc.contributor.author | Zhao, Dafang | |
dc.contributor.author | Ali, Muhammad Aamir | |
dc.contributor.author | Kashuri, Artion | |
dc.contributor.author | Budak, Huseyin | |
dc.date.accessioned | 2021-12-01T18:50:32Z | |
dc.date.available | 2021-12-01T18:50:32Z | |
dc.date.issued | 2020 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | In this paper, we establish inequalities of Hermite-Hadamard type for harmonically convex functions using a generalized fractional integral. The results of our paper are an extension of previously obtained results (Iscan in Hacet. J. Math. Stat. 43(6):935-942, 2014 and Iscan and Wu in Appl. Math. Comput. 238:237-244, 2014). We also discuss some special cases for our main results and obtain new inequalities of Hermite-Hadamard type. | en_US |
dc.description.sponsorship | Special Soft Science Research Projects of Technological Innovation in Hubei Province [2019ADC46]; Fundamental Research Funds for Central UniversitiesFundamental Research Funds for the Central Universities [2019B44914]; Key Projects of Education Commission of Hubie Province of China [D20192501]; Natural Science Foundation of Jiangsu ProvinceNatural Science Foundation of Jiangsu Province [BK20180500]; National Key Research and Development Program of China [2018YFC1508100]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11971241] | en_US |
dc.description.sponsorship | This work was supported in part by Special Soft Science Research Projects of Technological Innovation in Hubei Province (2019ADC46), the Fundamental Research Funds for Central Universities (2019B44914), Key Projects of Education Commission of Hubie Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500), the National Key Research and Development Program of China (2018YFC1508100) and partially supported by the National Natural Science Foundation of China (11971241). | en_US |
dc.identifier.doi | 10.1186/s13662-020-02589-x | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85082574423 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1186/s13662-020-02589-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10891 | |
dc.identifier.volume | 2020 | en_US |
dc.identifier.wos | WOS:000522451500001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springeropen | en_US |
dc.relation.ispartof | Advances In Difference Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hermite-Hadamard inequalities | en_US |
dc.subject | Generalized fractional integral | en_US |
dc.subject | Harmonically convex functions | en_US |
dc.title | Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10991.pdf
- Boyut:
- 3.58 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text