STRATEGIES AND MECHANISMS OF PLANT-MICROBIOME-POLLINATOR COADAPTATION

dc.contributor.authorIlyasov, Rustem A.
dc.contributor.authorIlyasova, Alia Y.
dc.contributor.authorDanilenko, Valery N.
dc.contributor.authorKekeçoǧlu, Meral
dc.contributor.authorRašić, Sladan
dc.contributor.authorThai, Pham Hong
dc.contributor.authorKhrapova, Svetlana Nikolaevna
dc.date.accessioned2025-10-11T20:45:30Z
dc.date.available2025-10-11T20:45:30Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractPlant-pollinator interactions showcase mutualistic coevolution, but the role of microorganisms in these relationships is often overlooked. Nectar-dwelling microorganisms, mainly yeasts and bacteria, significantly influence floral chemistry, pollinator behavior, and plant reproduction. These microorganisms alter nectar's sugar content, amino acid profiles, pH, and scent emissions, shaping pollinator preferences. For example, the yeast Metschnikowia reukaufii produces fruity esters that attract bumble bees, while some bacteria lower pH, repelling honey bees. Pollinators spread these microorganisms between flowers, creating a feedback loop that shapes microbial communities and drives coevolution. Beyond nectar, microorganisms' impact on thermal regulation through metabolic heat, pollen health, and pollinator gut microbiomes. Specialized bacteria like Rosenbergiella nectarea and Acinetobacter spp. thrive in nectar's high-sugar environment, while pollinator microorganisms, such as Lactobacillus kunkeei, protect honey bees from pathogens. Microbial diversity varies by region, with tropical flowers hosting richer communities than temperate ones. This review highlights how microorganisms act as key players in plant-pollinator networks, boosting pollinator nutrition, immunity, and foraging efficiency. It explores microbial spread, competition, and chemical influence, calling for studies that blend microbiology, ecology, and evolution. Understanding these interactions is vital for predicting how climate change and habitat loss threaten pollination, affecting agriculture and biodiversity. © 2025 Elsevier B.V., All rights reserved.en_US
dc.identifier.doi10.31467/uluaricilik.1675598
dc.identifier.endpage196en_US
dc.identifier.issn1303-0248
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-105007216568en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage171en_US
dc.identifier.trdizinid1315735en_US
dc.identifier.urihttps://doi.org/10.31467/uluaricilik.1675598
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1315735
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21373
dc.identifier.volume25en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.publisherBursa Uludag Universityen_US
dc.relation.ispartofUludag Aricilik Dergisien_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_Scopus_20250911
dc.subjectCoadaptationen_US
dc.subjectCoevolutionen_US
dc.subjectHoney Beeen_US
dc.subjectMicrobiomeen_US
dc.subjectPollinatorsen_US
dc.titleSTRATEGIES AND MECHANISMS OF PLANT-MICROBIOME-POLLINATOR COADAPTATIONen_US
dc.title.alternativeBitki-Mikrobiyom-Polinatör Ko-adaptasyon Stratejileri ve Mekanizmalarıen_US
dc.typeReviewen_US

Dosyalar