Melting numerical simulation of hydrated salt phase change material in thermal management of cylindrical battery cells using enthalpy-porosity model

dc.authoridAfzal, Asif/0000-0003-2961-6186en_US
dc.authoridSaboor, Shaik/0000-0002-0490-4766en_US
dc.authoridAlwetaishi, Mamdooh/0000-0001-5053-4324en_US
dc.authorscopusid57057224800en_US
dc.authorscopusid56505514100en_US
dc.authorscopusid55293502300en_US
dc.authorscopusid57202959651en_US
dc.authorscopusid57193789174en_US
dc.authorscopusid56571673200en_US
dc.authorscopusid57190847465en_US
dc.authorwosidAfzal, Asif/U-3071-2017en_US
dc.authorwosidSaboor, Shaik/M-8170-2018en_US
dc.authorwosidAlwetaishi, Mamdooh/M-1322-2016en_US
dc.contributor.authorAfzal, Asif
dc.contributor.authorJilte, Ravindra
dc.contributor.authorSamee, Mohammed
dc.contributor.authorAgbulut, Umit
dc.contributor.authorShaik, Saboor
dc.contributor.authorPark, Sung Goon
dc.contributor.authorAlwetaishi, Mamdooh
dc.date.accessioned2024-08-23T16:04:33Z
dc.date.available2024-08-23T16:04:33Z
dc.date.issued2023en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractBattery thermal management using different cooling techniques is rapidly growing. Understanding the proper cooling and melting process when phase change materials (PCM) are used is of prime importance in this area. Hence, a transient thermal-fluid and melting process of hydrated salt PCM enclosed in a battery module with six cylindrical cells is numerically investigated to understand the melting process of the PCM. Four structural models S1, S2, S3, and S4 are constructed for the present numerical simulation. The battery cell wall is kept at a constant temperature of 35celcius, while the rectangular enclosure walls are assumed to be insulated. A finite volume scheme -based CFD (computational fluid dynamics) software is used to simulate the melting process of hydrated salt PCM. In order to capture the phase change phenomenon from solid to liquid, an enthalpy-porosity equation is solved. The temporal temperature distribution, liquid fraction, velocity and enthalpy are analyzed. The results obtained by the numerical computation suggest that the battery cell arrangement used in S1 and S2 model at the initial time step gives better space for temperature distribution and liquid fraction up to the time step of 420 s, while S3 and S4 model after a time interval of 420 s provide better scope for temperature distribution and complete melting of hydrated PCM.en_US
dc.description.sponsorshipUniversityen_US
dc.description.sponsorshipThis study was conducted with the support of the National Research Foundation of Korea (NRF-2021R1C1C1008791) . The researchers would also like to acknowledge Deanship of Scientific Research, Taif University, for funding this work.r University, for funding this work.en_US
dc.identifier.doi10.1016/j.seta.2023.103395
dc.identifier.issn2213-1388
dc.identifier.issn2213-1396
dc.identifier.scopus2-s2.0-85169890199en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.seta.2023.103395
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14262
dc.identifier.volume59en_US
dc.identifier.wosWOS:001124252600001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSustainable Energy Technologies And Assessmentsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydrated salt PCMen_US
dc.subjectCylindrical cellen_US
dc.subjectLiquid fractionen_US
dc.subjectBTMSen_US
dc.subjectMeltingen_US
dc.subjectLithium-Ion Batteryen_US
dc.subjectHeat-Pipeen_US
dc.subjectPerformanceen_US
dc.subjectConvectionen_US
dc.subjectSystemen_US
dc.titleMelting numerical simulation of hydrated salt phase change material in thermal management of cylindrical battery cells using enthalpy-porosity modelen_US
dc.typeArticleen_US

Dosyalar